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ABSTRACT 
 

This article describes an attempt for a real-time optimization of the net power output of an add-on 

Organic Rankine Cycle (ORC) system of a vehicle applying Nonlinear Model Predictive Control 

(NMPC). Therefore, a Modelica model library for satisfactorily accurate, fast vehicle and ORC models 

was developed. By means of the developed tool chain involving the optimizer MUSCOD II by the IWR 

Heidelberg, virtual simulation experiments of a waste heat recovery system for a long-distance bus 

could be realized. Results show an increase of the net power output of 7 % in part load engine operation 

in the European Transient Cycle compared to a conventional controller with optimum operation points 

optimized at steady-state conditions. 

 

1. MOTIVATION FOR THE HOLISTIC OPTIMIZATION OF THE 

OPERATION OF A WASTE HEAT RECOVERY SYSTEM IN VEHICLES 

 
In internal combustion engines, only a small part of fuel’s chemical energy is transformed into 

mechanical energy. The residual is mainly wasted as thermal energy via the cooling system or as exhaust 

gas into the environment. Especially the exhaust gas still has a high exergetic potential, which can be 

converted into mechanical energy by means of an Organic Rankine Cycle (ORC). The recovered energy 

reduces the amount of mechanical energy provided by the combustion engine and therefore reduces the 

total fuel consumption. Virtual test drives of vehicles with waste heat recovery systems (WHRS) based 

on ORC promises a high fuel saving potential [1], [2], [3] and [4].  

 

1.1 Interactions of the WHRS with Energy Systems in a Motor Vehicle 

The integration and operation of an ORC in such a complex energy system represented by a motor 

vehicle affects many other subsystems (see Fig. 1). Interaction between these systems have to be 

considered in the design stage as well as in the development of operation strategies.  

The combustion engine is affected by higher exhaust backpressure caused by pressure losses in the 

evaporator resulting in a slightly lower engine efficiency. Moreover, mechanical energy provided by 

the ORC reduces the load demand of the engine. This leads to a shift in the engine efficiency and the 

exhaust temperature, which has repercussions on the ORC itself. Furthermore, the condensing heat of 

the ORC significantly increases the load of cooling system. Under certain conditions, additional fans 

have to ensure target coolant temperatures. Admittedly, the power consumption of the additional fans 

exceed the additional power provided by the ORC, which results in a shutdown of the waste heat 
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recovery system. Not least, the additional weight of the ORC increases substantially the work load of 

the combustion engine. 

 

 

Figure 1: Interactions of the WHRS with other systems in mobile applications could influence the objective 

function (minimization of fuel consumption) substantially (i.e. power demand of additional fans). 

In order to maximize the benefit of WHRS, interactions of different subsystems and their time constants 

should be integrated in the operation strategy in order to minimize shut down times of the WHRS and 

to maximize the recovered amount of exhaust exergy.  

 

1.2 Variable Operation Points of the ORC Enables Waste Heat Recovery at Part Load Conditions 

Focusing on the operation of the WHRS, car manufacturers currently consider a control approach with 

only one static operation point [1], [5], which is optimized for a representative driving cycle. Depending 

on actual exhaust enthalpy flow rate, the chosen operation point mostly differs from the current 

optimum operation point. Figure 2 shows a T-h diagram of an optimized operation point and one 

operation point which was designed for higher exhaust gas temperatures. It can be seen that the exhaust 

exergy used is significantly lower in the design operating point, which cannot compensate higher 

thermodynamic efficiencies. Thus, the second law efficiency for the adapted optimum operation point 

is 20 percentage points higher than for the fixed operation point. In the worst case, the WHRS is been 

shut due to low working fluid mass flow rates in part load conditions despite an still existing exhaust 

exergy potential. 

 

 

Figure 2: T-h-Diagram of two ORCs at different operation points with corresponding exhaust temperature 

course in the heat exchanger for an exhaust inlet temperature of 250 °C. Operation point optimized for 

higher loads () shows poor usage of exhaust exergy compared to currently optimal operation point () 

Enabling variable ORC operation points increases the benefit of the WHRS also in part load conditions, 

but requires the consideration of the dynamic behavior of the system (step response or time constants 

on excitation of the system). Optimized operation points calculated under steady state conditions differ 

from actual optimum control variables the more, the larger the time constants of the WHRS and the 

more dynamic the changes in the exhaust gas enthalpy flow rate are. 
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1.3 NMPC as One Promising Method to Minimize the Fuel Consumption for Real Drives 

In order to maximize the benefit of a WHRS, the control strategy has to utilize variable operation points 

with respect to the system’s dynamic behavior, future states of the ORC and dependencies of interacting 

systems. Conventional control strategies such as heuristic controls cannot fulfill these criteria. 

Nonlinear model predictive control (NMPC) is one method to meet this challenge. Based on a simplified 

nonlinear mathematical model of the system, an optimizer computes the ideal course of controlled 

variables for a certain prediction horizon. NMPC uses relevant information about the actual state of the 

vehicle and the predicted variables for real-time control. Relevant predicted data for the optimization 

are for example: 

 

 Route including gradients and traffic 

 Style of driving 

 Comfort demand of passengers 

 Ambient conditions (solar radiation, winds, temperature) 

 

Due to fluid properties, the vehicle with its subsystems, especially the WHRS, is characterized by a 

high grade of nonlinearity. Hence, linear optimization approaches, as they are discussed in [6] and [7] 

for following given set points, are not applicable for set point optimization in large operation intervals. 

Therefore, efforts regarding fast and accurate nonlinear simulation models have to be done. 

 

This article describes a first attempt of the development of an NMPC for a WHRS for a long distance 

bus. Therefore, a transient full vehicle simulation model of a long distance bus with a WHRS was set 

up. The WHRS model is based on a conventional ORC using Ethanol as working fluid and a Scroll 

expansion machine, which enables expansion in the two-phase region. The basis for the simulation 

study is the exhaust gas enthalpy flow rate of the part load section of the European Transient Cycle 

(ETC). As a first step, the chosen optimum criterion was set to the maximization of the ORC power 

output. To compare NMPC with heuristic control methods, optimum power points in steady state 

condition were calculated for each exhaust gas inlet state, which are adjusted by conventional Single-

Input-Single-Output (SISO) controllers. 

 

2. MODEL DESCRIPTION AND STEADY-STATE OPTIMIZED OPERATION 

POINTS FOR BENCHMARKING A CONVENTIONAL CONTROL STRATEGY 
 

Basis for the development of the advanced control strategy is a conventional Organic Rankine Cycle, 

which is described in Fig. 3. The working fluid (Ethanol) leaves the feed pump in pressurized liquid 

state (1-2) and then enters in the evaporator, where it is heated and vaporized (2-3). In the expander 

(3-4), potential energy of the working fluid is converted into mechanical energy, which is used in the 

vehicle to drive auxiliaries. After the expansion, the working fluid is liquefied in the condenser. With 

re-entering the feed pump, the cycle starts again. 

 

 

Figure 3: Investigated process configuration and T-s-Diagram. The working fluid is evaporated directly in 

the evaporator without using a secondary loop system 



 

Paper ID: 123 Page 4 
 

3rd International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium 

2.1 Transient Simulation Model in Modelica 

For the evaluation of investigated control strategies, a transient simulation model of the ORC was set 

up in the programming language Modelica by means of the self-developed model libraries TIL and 

TILMedia. The evaporator is a physical model of a fin-and-tube heat exchanger, which is designed to a 

steady-state pinch point temperature of 10 K at the highest occurring exhaust gas enthalpy flow rate. 

The expansion machine model is efficiency based and represents a volumetric expander (scroll), which 

enables expansion in two-phase region. The condenser is connected to the vehicle cooling system, 

which supplies constant coolant temperature of 90 °C. 

 

2.2 Optimum Operation Points in Steady State Conditions 

In order to evaluate NMPC, a conventional control strategy based on steady-state optimized operation 

points was set up. Two degrees of freedom govern the net power output: expander inlet pressure and 

expander inlet enthalpy. The optimum operation point correlates not necessarily with the maximum 

cycle efficiency, but with the second law efficiency. A gradient-based optimization algorithm applied 

on a steady-state model of the ORC finds the optimum operation point for each boundary condition. 

Although the heat transfer coefficients depend on the mass flow rate of the exhaust gas and the working 

fluid as well as on the states in the heat exchanger, a constant pinch point temperature of 10 K in the 

evaporator was assumed. The expander inlet pressure was limited to 5 MPa.  

 

Figure 4 shows the net power output of described ORC as a function of the expander inlet state. For 

low exhaust gas enthalpy flow rates (Fig. 4, left), optimum expander inlet state is located in the two-

phase region, whereas it is in superheated region for high enthalpy streams (Fig. 4, right). 

  

  

Figure 4: Net power output of ORC dependent on expander inlet pressure and enthalpy for low (left) and 

high (right) exhaust gas enthalpy flow rates. Projected fluid dew and bubble lines indicate the properties of 

mapped states. Working fluid: Ethanol, expander type: scroll, maximum pressure: 5 MPa 

 

3. INTRODUCTION TO NMPC 

 
This section introduces the theory of NMPC. The following NMPC scheme is derived based on the 

formulation and numerical solution approach of an Optimal Control Problem (OCP). Additionally, the 

key parameters influencing both solution quality and speed are discussed. 

 

3.1 Optimal Control Problem (OCP) 

The concept of this method is to calculate a specific control variable trajectory, which influences the 

dynamic behaviour of a plant in a way that it maximizes a given objective function. As a first step, the 

objective functions is the maximization of the net power output of the ORC over the considered horizon: 

 

max
𝑛𝑃𝑢𝑚𝑝,𝑛𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑟

𝑃𝑒𝑙,𝑂𝑅𝐶 = 𝑃𝑒𝑙,𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 − 𝑃𝑒𝑙,𝑃𝑢𝑚𝑝 4.1 

 

The optimal control trajectory is determined based on a mathematical model of the plant, which would 

be a system of semi-explicit differential algebraic equations of index 1. To achieve an optimal control 

trajectory, an objective function is needed as a benchmark of the system’s performance. Therefore, 
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Lagrange-type terms can be used to maximize or minimize it over the entire time horizon or a Mayer-

type term limits the target value to a set endpoint. In addition, a combination of the two known as a 

Bolza type objective function can be utilized. This leads to the general formulation of an OCP subject 

to several constraints. Besides the already described DAE system, we find path-constraints, e.g. a 

maximum temperature limit, which must not be exceeded at all times and point-constraints, defining 

boundaries only at definite instants. At last, the trajectories of the state variables have to be a solution 

to the initial value problem (IVP) with the given start values. Thus, the optimal control function must 

satisfy these constraints in order to be a valid solution of the OCP. 

 

3.2 Nonlinear Model Predictive Scheme 

In order to control a plant in a closed loop rather than an open loop setting, the OCP has to be solved 

repeatedly with up-to-date measurements of the system’s states as initialization (Fig. 5). As proposed 

in [8], the real-time iteration approach is used, that performs only one Sequential Quadratic 

Programming (SQP) iteration per NMPC sample. Starting with a preparation phase, all functions and 

derivatives are evaluated, that do not depend on the current state 𝑥0. As soon as the new measurement 

of 𝑥0 is available, the feedback phase starts with the computation of the control function 𝑢(𝑡), which is 

limited to a single Quadratic Programming (QP) due to the computation during preparation. Eventually, 

𝑢(𝑡) can be given to the plant in the transition phase. Afterwards the new time sample starts according 

to the three phases. 

 

 

  

∆𝑡𝑝 Prediction horizon 

w Set value 

𝛿 Sample time 

�̅� Control variable at 𝑡𝑖 

�̅� System response to constant �̅� 

�̂� Optimized control variable 

�̂� System response to �̂� 

Figure 5: Nonlinear Model Predictive Control is a repeated solving of OCPs. At 𝑡𝑖+1, solving OCP restarts 

for the prediction horizon with current measured or estimated input values 

 

3.3 Key Parameters in NMPC 

The optimality of the solution as well as the computation time can be influenced not only by the 

complexity of the model, which is used for NMPC. A great impact also derives from the number of 

shooting knots 𝑁, hence the discretization of the NLP, and the prediction horizon ∆𝑡𝑃. Higher values 

lead to significantly increased numerical effort, but also to a better solution. A key parameter for online 

NMPC is the sample rate at which measurement data is provided and new control values are passed on 

to the plant. The optimization problem has to be solved fast enough to satisfy the required sample 

interval. Otherwise, the control values of the previous synchronization are used, which are usually not 

minimizing the objective function of the progressed system state. Table 1 shows the key parameters for 

the performed study: 
 

Table 1: Key parameters for the performed study 

Prediction horizon  4 s 

Shooting knots 4 

Sample rate 3,3 Hz 
 

In this study, a higher prediction horizon shows only a slight increase in the ORC power output, but 

also in missing the real-time criterion (Intel Core™ i7-4770K CPU, 3,50GHz, 32GB RAM, Windows 

8 - 64 bit) 

http://www.dict.cc/englisch-deutsch/discretization.html
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3.4 Approach for a Prototype Setup 

In this section, the software framework for a convenient setup of simulated and real-world NMPC loops 

is presented. The basic principle is to use different specialized software for each task and to couple it to 

a co-simulation master. Using Functional Mockup Interface (FMI) ensures integrity of the underlying 

plant model that is used in several places, and avoids error-prone and time-consuming model 

transformations.  

 
Figure 6: Used software framework for prototype NMPC attempt 

 

The software framework for the NMPC prototype environment is described in Figure 6. For data 

exchange, the co-simulation platform TISC [9] is used to set-up a NMPC prototyping environment. 

TISC acts as master and manages data exchange between different clients. There already exist interfaces 

between TISC and a variety of simulation, visualization and measurement tools, e.g. Dymola, LabView, 

and Simulink. The user has to define types and names of variables to be sent and received for each 

client. Data routing between clients is automatically managed by matching variable types and names. 

The TISC type of time is Double, whereas all other variables are of TISC type Double Array. This 

definition enables the exchange of components of an NMPC loop. Hence, the virtual plant modeled in 

Modelica can be replaced easily by a real plant interfaced with LabView [8]. As optimizer, MUSCOD II 

of IWR at Heidelberg University, Germany as described in [10], [11] and [12], is proven to be 

appropriate.  

 

4. NONLINEAR HIGH-SPEED MODEL FOR ONLINE OPTIMIZATION 

 
The NMPC requires a nonlinear high-speed model, which maps real systems or, like presented in this 

study, a sophisticated model of the ORC accurately and which fulfils the demand of real-time 

optimization. Every component has been developed against certain requirements that need to be fulfilled 

in order to guarantee an efficient usage in the optimization process. The first key aspect is based on the 

solving process of the NLP. Like described in section 3, the SQP method is used in this case, which 

obligates that both the objective function and the constraints, thus all variables of the NMPC plant-

model, are at least twice continuously differentiable with respect to the input 𝑢(𝑡) [10]. Any 

discontinuity in the state trajectories leads to a less efficient optimization and hence should be avoided. 

One key component for optimization of the transient operation of the ORC is the evaporator. Therefore, 

big effort is being made to map the physical characteristics of the real evaporator. For calculating the 

heat transfer, the NTU approach is used. To ensure continuous differentiability, the term 
 

�̇� = 𝑘𝐴′∆𝑇𝑜 (
1 − 𝑒−𝜃𝐿

𝜃
) 

4.2 

 

with 𝜃 = 𝑘𝐴′ (
1

�̇�1𝑐𝑝1
−

1

�̇�2𝑐𝑝2
) 

4.3 

is transformed with the help of the hyperbolic sine function. The term is now defined for equal heat 

capacity flow rates [13]: 

Measured 
values 

Control 
variables 

Measured or  
 
estimated values 

http://www.dict.cc/englisch-deutsch/differentiability.html
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�̇� = 𝑘𝐴′∆𝑇𝑜𝑒
−
𝜃𝐿
2 ∗ 𝑠𝑖𝑛ℎ𝑐 (

𝜃𝐿

2
) 

4.4 

 

To take account of the different heat transfer coefficients of the working fluid in the different states, the 

heat exchanger is divided into three NTU sections (subcooled, two-phase and superheated). The mass 

balance in the three volume elements is calculated by 
 

�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = [(
𝜕𝜌

𝜕𝑝
)
ℎ

𝑑𝑝

𝑑𝑡
+ (

𝜕𝜌

𝜕ℎ
)
𝑝

𝑑ℎ

𝑑𝑡
] 𝑉, 

4.5 

 

whereas the energy balance is given by 
 

𝑚
𝑑ℎ

𝑑𝑡
= �̇�𝑖𝑛(ℎ𝑖𝑛 − ℎ) − �̇�𝑜𝑢𝑡(ℎ𝑜𝑢𝑡 − ℎ) + �̇� +

𝑑𝑝

𝑑𝑡
𝑉 

4.6 

 

The thermal capacity of the heat exchanger wall is modeled by one differential state, which determines 

the transferred heat to the working fluid. Figure 7 shows a scheme of the model approach for the 

evaporator.  

 

 

The total high-speed model is illustrated in Figure 8 (left). Efficiencies of the pump and the expander 

are mapped; component inertias are represented by first order elements. 

 

 

 

Figure 8: Scheme of high-speed model (left). Deviations in time constants on random pressure steps between 

high-speed and sophisticated model are acceptable (right) 

 

 

 

Figure 7: Evaporator Model. Consists of one cell for each working fluid phase. A modified NTU approach is 

used to calculate heat transfer coefficients. Transient conduct is modeled by finite volume elements 
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To evaluate the accuracy of the high-speed model, simulations with random steps on both models were 

carried out. Figure 9 shows only minor deviations in the step response for the sophisticated model and 

the high-speed model. Deviations in time constants are in accordance to low simulation times in 

acceptable intervals (Fig 8 right). The median error of the high-speed model for steady state target 

values are 5% for the expander inlet enthalpy and 1% for expander inlet pressure.  

 

5. BENCHMARK OF NMPC AND CONVENTIONAL CONTROL IN THE URBAN 

PART OF THE EUROPEAN TRANSIENT CYCLE 

 
In order to benchmark NMPC and the conventional control approach based on steady state optimized 

operation points in part load conditions, simulation experiments within the urban section of the 

European Transient Cycle (Fig. 10) were carried out for each control strategy. 

 

 

Figure 10: Velocity profile of the European Transient Cycle (ETC) 

 

Figure 11 shows the course of expander inlet pressure and enthalpy over the cycle. It can be seen, that 

the conventional control cannot satisfactorily adjust the set values, which are calculated through steady 

state optimization. This is caused by the time constants of the ORC, which are not considered in steady 

state simulations. NMPC however tends to lower expander inlet pressures and higher expander inlet 

enthalpies. 

  

Figure 9: Step response on expander speed steps (left) and pump speed steps (right) of sophisticated and 

high-speed model 
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Figure 11: Course of expander inlet pressures (left) and inlet enthalpies (right). NMPC tends to higher inlet 

enthalpies and lower inlet pressures. Steady state operation points are not adjusted satisfactorily by PI-control 

These different courses could be explained with focusing on the pump work, which affects the net 

output of the ORC. Because of the higher pressure steps of the PI-control, the pump work is significantly 

higher than of the NMPC (see Fig. 12, left) and the pump work of the steady state model.  

 

  

Figure 12 Pump work (left) and expander power output (right) of the ORC for both PI-Control and NMPC. 

NMPC show a 7 % higher average net power output 

Thus, the expander power output of NMPC is not significantly higher (see Fig. 12, right), but cleared 

with actual pump work, NMPC provides a 7 % higher average net power output in part load operation 

of the internal combustion engine than the conventional control strategy based on operation points 

optimized in steady state conditions. Assuming that the ORC is shut down in part load operation for a 

conventional strategy with an operation point designed to high load operation, NMPC with variable 

operation points could increase the power output of the ORC by 15 %. 

 

6. CONCLUSIONS 

 
Optimal control approaches could increase the total system efficiency by considering interaction of 

several subsystems, future states and inertias of the thermal systems. NMPC is one promising method. 

At the TU Braunschweig and TLK-Thermo, a software tool chain was developed in order to facilitate 

NMPC for thermal systems. In this article, a NMPC approach for a WHRS of a long distance bus was 

developed. Particular challenge was the development of a high-speed model of the evaporator, which 

maps heat transfer coefficients and inertias accurately accomplishing the requirements of real-time 

optimization. In a simulation study, maximization of the WHRS net output in the part load section of 

the European Transient Cycle was considered. Results show an increase of the net power output of 7 % 

compared to a conventional controller with operation points optimized at steady-state conditions. 
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NOMENCLATURE 

 
ETC European Transient Cycle FMI Functional Mockup Interface 

ICE Internal Combustion Engine IVP Initial Value Problem 

NLP Nonlinear Programming NTU Number of Transfer Units 

NMPC Nonlinear Model Predictive Control QP Quadratic Programming 

OCP Optimal Control Problem SQP Sequential Quadratic Programming 

WHRS Waste Heat Recovery System 
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