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ABSTRACT

In this paper, an automated design tool for Organic Rankine Cycle (ORC) turbines is presented. Su-
personic flows and real-gas effects featuring ORC turbines complicate significantly their aerodynamic
design, which may benefit significantly from the application of systematic optimization methods. This
study proposes a complete method to perform shape optimization of ORC turbine blades, constructed
as a combination of a generalized geometrical parametrization technique, a high-fidelity Computational
Fluid Dynamic (CFD) solver (including real gas and turbulence models) and an evolutionary algorithm.
As a result, a non-intrusive tool, with no need for gradients definition, is developed. The high computa-
tional burden typical of evolutionary methods is here tackled by the use of a surrogate-based optimiza-
tion strategy, for which a Gaussian model is applied. Application to ORC turbines has been proved to
be successful, resulting in a comprehensive method for a very wide range of applications. In particular,
the present optimization scheme has been applied to the re-design of the supersonic nozzle of an axial-
flow turbine. In this design exercise very strong shocks are generated in the rear blade suction side and
shock-boundary layer interaction mechanisms occur. Optimization aiming at a more uniform flow at the
blade outlet section is shown to minimize the shock losses, resulting in a significant improvement in the
nozzle efficiency. The optimal configuration determined with the present design tool is also success-
fully validated against the outcome of a previous optimization performed with a gradient-based method,
demonstrating the reliability and the potential of the design methodology here proposed.

1. INTRODUCTION

Thanks to the progressive increase of computational capability, optimization techniques based on high-
fidelity flow models play a key role in the present-day design process of turbomachinery. The tur-
bomachinery design process offers optimization challenges at different fidelity levels, from the zero-
dimensional stage-by-stage definition (Pini et al. (2013)), to the axisymmetric design (Larocca (2008);
Pasquale et al. (2014)), up to the detailed blade shape definition (Verstraete et al. (2010); Pini et al.
(2014)).

In the last decades several CFD-based shape optimization procedures were specifically developed in
Aerodynamics, such as inverse design methods (Demeulenaere et al. (1997)), adjoint-based gradient
methods (Peter and Dwight (2010)), or evolutionary algorithms (Coello (2000)). These latter techniques
allow to explore a wider range of feasible solutions, identifying the best individual, and also allow to
handle multi-objective optimization problems (Pierret et al. (2006)).

In this paper, a novel optimization package is presented, based on evolutionary algorithms, specifically
oriented to the design of turbomachinery blades. Thanks to the high-fidelity flow model, which includes
turbulence models and a generalized thermodynamic treatment of the working fluid, the method is par-
ticularly attractive for ORC turbines, that feature severe supersonic flows and strong real-gas effects.
Several optimization algorithms are tested and the application of the design tool to a highly complex
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ORC turbine indicates that dramatic performance improvement is achievable by systematic application
of the proposed optimization method.

The paper is structured as follows: in Section 2, the methodology behind the shape optimization tool
is described in detail; in Section 3, the different optimization strategies applied and the environment in
which they are implemented are discussed. Section 4 finally reports the results of the application to a
supersonic ORC turbine nozzle, considering the effectiveness of optimization as well as its implications
on the cascade aerodynamics.

2. METHODOLOGY

The optimization strategy here presented is constructed by combining four main blocks, namely a ge-
ometry parameterization code, a high-fidelity CFD solver, a library of evolutionary algorithms, and a
meta-model interpolation tool. All these items are discussed in detail in the present Section. In particular,
Subsection 2.1 describes howB-Spline curves are used to generate the blade geometry; in Subsection 2.2,
the CFDmodel employed for the present high-fidelity calculations is summarized; in Subsection 2.3, ge-
netic algorithms and evolutionary strategies are presented; finally, in Subsection 2.4 the surrogate model
used in this study is defined.

2.1 Geometry Parameterization
A key feature of shape-optimization problems in aerodynamics is the technique used to reconstruct the
shape of profiles by employing a minimum number of variables. In this work, B-Spline curves are used
to parameterize the blade geometry, as the shape can be easily described by a certain number of so-called
control points. Thanks to this and other features, B-Spline curves are presently recognized as a powerful
tool in both application and theory for aerodynamic designs (Farin (2002)).

A B-Spline can be defined as a piecewise curve with components of degree n that provide local support
and whose smoothness and continuity can be adjusted. Thus, a B-Spline curve can be described as a
weighted sum of basis functions as follows:

x(u) =
L
∑
j=0

djNn
j (u) (1)

where {dj}, with j = 0, . . . ,L, are the control points, and Nn
j (u) are the corresponding n-degree B-Spline

bases. These can be defined recursively in the form:

Nk
j (u) =

u − uj−1
uj+k−1 − uj−1

Nk−1
j (u) +

uj+k − u
uj+k − uj

Nk−1
j+1 (u)

N0
j (u) = {

0 if uj−1 ≤ u < ui,
1 otherwise

(2)

where {uj}, with j = 0, . . . ,K, is the knot sequence and u is a parameter. Notice that K = L+n−1.
At this point, a first algorithm can be developed to generate a B-Spline curve from a given set of control
points, as it is depicted in Figure 1.

Figure 1: Geometry generation algorithm. CPi and n are the control points and the degree of the
curve, respectively; {uj} is the knot sequence. As output, the B-Spline curve x(t) is generated.
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The optimization tool described in this study is able to build an approximate representation of the shape
of the blade using a B-Spline curve, defined and manipulated by the position of the control points. In
order to generate this curve, the baseline geometry needs to be interpolated. In this work, a least squares
interpolation method is used.

It is assumed that P + 1 data points pi are given, with i = 0, . . . ,P, and we seek to find the approximated
B-Spline curve x(u) of degree n andK+1 knots uk, with k = 0, . . . ,K. This B-Spline curve will be defined
by L+ 1 control points dj, with j = 0, . . . ,L, such that L = K− n+ 1. The error of the approximation for a
given point can be expressed as ∥pi − p(wi)∥, where wi, with i = 0, . . . ,P, are the data parameters of the
problem. Therefore, the objective is to minimize the total approximation error:

f(x) =
P
∑
i=0
∥pi − x(wi)∥ (3)

If we rewrite Equation (3) using Equation (1) and perform a least squares minimization process, a final
expression for the L + 1 normal equations is derived:

L
∑
j=0

dj
P
∑
i=0

Nn
j (wi)Nn

k(wi) =
P
∑
i=0

piNn
k(wi); (4)

This equation leads to a linear system A ⋅ x = B that is solved, in this work, by using Cholesky Decom-
position. At this point, a new algorithm can be defined, to find the control points that best represent a
given geometry, as it is depicted in Figure 2.

Figure 2: Interpolation algorithm. xi, n and NCP are the data points, the degree of the B-Spline
curve and the desired number of control points, respectively. {uj} and {wj} are the knot sequence
and the data parameters. As output, the control points CPi of the B-Spline are generated.

The sequence of data parameters {wi} is built using a centripetal parameterization. With regard to the
knot sequence, it can control the shape of the final interpolated B-Spline. It divides the curve into seg-
ments, defined on a knot span. In this work, the knot sequence is used to regulate the position of the
control points that serve as design variables of the optimization problem. In this way, one can identify
areas prone to optimization and thus assign a different number of control points for each region during
the interpolation process.

In this study, both pressure and suction sides of the blade are generated with a unique B-Spline curve.
However, the trailing edge will be considered separately, as it is best represented by a circular arc. As a
result, the B-Spline curve is constrained to pass through the first and last data points to create a closed
curve along with the circular-shaped trailing edge. Continuity and regularity are ensured by imposing
same derivative. Additionally, no weights for the control points are used during the interpolation.

2.2 CFD Codes
The present optimization strategy makes use of high-fidelity numerical simulations of the selected blade
configurations, performed applying a fully-turbulent and real-gas CFD model based on the ANSYS-
CFX solver. As only blade-to-blade effects are of interest, quasi-3D simulations are carried out, using
2D profiles generated with the geometry parameterization algorithm and considering a straight stream-
tube around midspan. The effects of turbulence are introduced by resorting to the κ − ω SST model,
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providing a proper clustering of the cells in the near-wall region so to ensure y+ below unity along the
blade. The real-gas thermodynamic behavior of the working fluid is treated by means of a Look-up-
Table (LuT) interpolation method; the LuT was constructed in primitive variables (P, T) by resorting to
the Span-Wagner equations of state implemented in the FluidProp database (Colonna et al. (2008)). Total
conditions, flow angles, and turbulence quantities are assigned at the inlet, and static pressure is given at
the outlet. The onset of spurious pressure wave reflections from the downstream boundary is avoided by
placing the outflow boundary three axial chords away from the trailing edge. High resolution numerical
schemes are used for advective and diffusive fluxes.

2.3 Genetic Algorithms
The interest in single and multi-objective optimization has grown dramatically in the last decades, thanks
to the progressive increase of computational power. In engineering, this has led to the development of
several methods which apply the concepts of optimization to support the design of components. Thus,
design-oriented optimization can be pursued by applying inverse design methods, gradient-based meth-
ods, or heuristic methods. For aerodynamic design purposes, the application of heuristic methods is
particularly attractive, as it can be performed by using direct calculation models (such as CFD).

Within the class of heuristic methods, Evolutionary Algorithms (EAs) have become very interesting in
a wide range of applications, due to many advantages that make them outperform other optimization
methods. Among them, Genetic Algorithms (GAs) have the possibility of dealing with oscillating or
smooth-less objective functions; they also allow to introduce constraints in a relatively easy way, and to
treat multi-objective optimization as well. Furthermore, genetic algorithms are global optimizationmeth-
ods and, hence, are best suited for optimization problems with multiple local optima, for which gradient
methods are too computationally expensive or not readily available. In many optimization problems,
GAs quickly identify promising regions of the design space where the global optimum might be located.
The interested reader is invited to consult Reeves and Rowe (2002) for a complete description of different
GA approaches.

However, the flexibility and simplification provided by GAs are achieved through a massive applica-
tion of the direct computational model of interest, and thousands of evaluations are usually needed to
identify the optimum. Shape-optimization problems in aerodynamics require the application of CFD
models, which are expensive tools requiring at least some minutes of calculation to achieve convergence
(a reliable optimization requires, in general, fully turbulent flow models and an appropriate grid resolu-
tion). As a consequence the direct application of CFD-based genetic optimization is usually not feasible
for aerodynamic design purposes. To tackle this unacceptable computational cost, surrogate models can
be used. Surrogate models, also known as meta-models or response surfaces, are analytical functions
that relate the design variables with performance (i.e., the objective function) in an approximate way.
A mathematical representation is selected for the objective function with no relation with the physical
phenomena of the real problem (namely, with the CFD model). As it will be discussed later, the math-
ematical model is trained along the process, resulting in a dramatic reduction of computational burden,
as the genetic algorithm is applied directly to the meta-model.

2.4 Surrogate Models
An extensive theory about surrogate models has been developed and many schemes are currently avail-
able (the interested reader is referred to Simpson et al. (2001) for a review of available techniques). In
this study, the Kriging model is used as the mathematical approximate objective function or non-linear
constraint. The Kriging technique is based on a set of interpolation methods, sometimes called Gaussian
Processes, originally developed for geostatistic problems and nowadays widely used in many engineer-
ing fields. The mathematical model of Kriging can be understood as the linear combination of a trend
function and the implementation of a stochastic process. The most common form of a Kriging model is
as follows:
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f̃(x) = g(x)Tβ + r(x)TR−1(f −Gβ) (5)

where x is the point to be evaluated; g(x)Tβ is the trend function evaluated at x, whose coefficients
are estimated using a least squares approach; r(x) is the correlation vector with the data points; R is
the correlation matrix for all of the data points; f is the response values vector; and Gβ is a vector that
contains the trend function evaluated at all data points. The terms in the correlation vector (r(x)) and
correlation matrix (R) are computed using a Maximum Likelihood Estimation (MLE) procedure.

The implementation of this meta-model in the evolutionary optimization strategy is described in Sec-
tion 3.

3. IMPLEMENTATION

In this study the optimization problem has been assembled in the object-oriented framework Dakota
(Adams et al. (2013)). Dakota provides optimization algorithms, i.e. single-objective andmulti-objective
genetic algorithms, as well as surrogate models and optimization strategies.

To perform the optimization using genetic algorithms, the JEGA library is used. JEGA (Java Engine for
Genetic Algorithms) is a framework that provides a flexible and extensible optimization environment for
computational models. Different optimization approaches have been considered and tested to investigate
the performance and eventually improve the automatic design tool developed in this research. The initial
database is built using Latin Hypercube sampling technique. Usually the size of the population is taken
as 2 to 4 times the number of design variables. For example in the present case, a population of 50
individuals is chosen, in line with the 16 design variables used. The probability of crossover andmutation
are 80% and 20%, respectively. Elitism is used as selection technique.

To determine the Kriging parameters, the Surfpack library is employed. In this case, it uses a global
searchmethod calledDiRect algorithm (dividing rectangles), a derivative-free global optimizationmethod
that balances search in promising and unexplored regions. The trend function is built using a reduced
quadratic expression. When working with non-linear constraints, a Kriging model is also built as a math-
ematical expression for each of them.

Regarding optimization strategies, local and global schemes are tested. In surrogate-based local opti-
mization (SBLO), also called Trust Region technique, the optimization algorithm operates directly on
a surrogate model that is built using an initial database composed by a certain number of individuals.
However, the surrogate model has a limited reliability (especially at the beginning of the process), and
hence the fidelity of the approximation is assessed by comparing with the high-fidelity expensive tool
(by running the CFD solver). The main feature of the local optimization is the use of a trust region ap-
proach, which defines the extent of the approximation. SBLO method needs to generate and update the
data fit in each trust region, performing high-fidelity evaluations over a design of experiments. Although
a local approach, each sampling in the trust region can be performed globally, which allows to extract
relevant global design trends. The comparison between the surrogate and the high-fidelity evaluations,
formulated as a trust region ratio, is used to define the step acceptance and trust region size and position
of the next iteration.

On the other hand, in a surrogate-based global optimization (SBGO), the algorithm is not supported
by a trust-region approach. It starts from an initial sample of points and the optimizer operates on that
surrogate, by updating its parameters after a new optimum is found and added to the sample. This
approach should be used carefully, as there is no guarantee of convergence. It should be used either
when there exists the need of using an initial database or when the surrogate needs, somehow, to be
updated globally. The surrogate becomes more accurate as the iterations progress. In the present study,
both global and local schemes are compared and tested.
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4. RESULTS

An exercise of shape-optimization is discussed in the following to demonstrate the capabilities of the
design tool presented in this paper. To show the flexibility and the wide range of application of the
technique, a particularly severe test-case is considered, namely a converging-diverging supersonic nozzle
for an axial-flow ORC turbine operating with MDM. The original blade geometry, shown in Figure 3
and called Baseline in the following, was designed by means of the method of characteristics (MOC)
for the diverging part and features a highly smooth leading edge to reduce the sensitivity to incidence
variations. The optimization process aims at maximizing the performance of the cascade operating with
an expansion ratio of 8 starting from a superheated condition (PT,in = 8bar, TT,in = 272C) close to
the saturation line. As a result, supersonic flows are induced (in fact, the cascade-exit Mach number
exceeds 2) and strong real-gas effects occur in the expansion, justifying the use of a LuT approach for
the thermodynamic modeling of the fluid.

Figure 3: Baseline profile shape and
control points distribution. Green cir-
cles indicate design variables, while red
ones are kept fixed during optimiza-
tion. The black circle indicates de con-
trol point that moves accordingly to
keep the trailing edge width constant.

The blade geometry has been first interpolated and
parametrized using the method described in Subsection 2.1.
Once the right number of control points is established, their
relative position can be adjusted by modifying the knot se-
quence. In this work, 30 control points have been found to
be sufficient to provide an accurate interpolation. From the
complete set, the vertical positions (y-coordinate) of 16 con-
trol points define the set of design variables for the optimiza-
tion problem (see Figure 3). The leading edge and the front
part (roughly up to the throat) are kept fixed during the op-
timization process and a larger number of control points is
chosen in these regions. The trailing edge width is kept con-
stant so to guarantee the structural resistance of the blade,
and therefore only one control point is needed to determine
the location of the trailing edge.

High-fidelity calculations were performed on structured
grids composed by 400,000 hexahedral elements. The re-
liability of the numerical model used in this context was previously assessed against experiments per-
formed by the authors themselves on a research turbine stage installed at Politecnico di Milano (Persico
et al. (2012)). The CFDmodel was shown to accurately predict the fully three-dimensional and unsteady
flow physics of the whole turbine stage, and provided estimates of stage efficiency within 1% of the
experimental datum, i.e. comparable to the uncertainty of the measurement technique.

In the following, several optimization tests are discussed, with the aim of investigating the impact of
different approaches on both the computational cost and the fitness of the design outcome. Different
surrogate strategies are considered, also in comparison to gradient-based optimization techniques; it is
shown how the proposed automatic design tool provides, in addition to the specific optimized geometry,
some intuitive design guidelines for supersonic ORC turbines.

4.1 Impact of the optimization strategy
At first, the comparison between the Global (training) and Local (trust regions) optimization strategies
is performed. For both cases the same objective function is used, defined as the standard deviation of
the azimuthal pressure distribution evaluated half axial chord downstream the blade trailing edge. The
minimization of this quantity in a supersonic cascade is expected to reduce the shock strength, thus
increasing the cascade performance.

For the construction of the Kriging surrogate model, a minimum sample size of 5 times the number
of design variables is commonly considered. In this study, 16 design variables are set to optimize the
geometry, and hence a database of 80 individuals is, in all cases, considered. In the global approach,
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Figure 4: Left: convergence history of global and local strategies for surrogate-based optimization.
Right: optimized geometry using global and local strategies for surrogate-based optimization.

this means that the code builds the initial Kriging model over this initial sample. After a complete GA-
optimization applied only to the mathematical model, the result is assessed via the high-fidelity tool
and added to the population (updating the Kriging parameters in each iteration). On the other hand,
the local approach builds a new Kriging model after each GA-optimization. These different features
are clearly visible in the left frame of Figure 4, where the paths towards optimization are compared for
the two methods; in particular, it is observed how the local scheme advances only each 80 high-fidelity
evaluations, while the global method advances continuously after the initial 80 iterations. As a result the
local approach shows amuch slower trend, even though the local and global schemes obtain a very similar
minimization of the objective function, significantly reduced with respect to the baseline configuration.
For this reason, in the following only the global scheme will be used.

Figure 5: Convergence history of Krigingmodel for (left) non-constrained, and (right) constrained
optimization, using a global strategy for surrogate-based optimization.

When performing evolutionary optimization using surrogate strategies, the convergence of the approxi-
mate model to the actual response surface of the problem needs to be verified. The left frame of Figure
5 shows that the surrogate model quickly matches the high-fidelity tendency, except for some spikes of
progressively reduced amplitude as the algorithm converges to the optimum. This allows to conclude
that the training procedure chosen for the Kriging model is appropriate for the present design problem.
The smooth convergence trends observed so far have been achieved without the application of explicit
constraints to the optimization. However from the engineering perspective it is interesting to investigate
how the optimization proceeds when a relevant quantity is constrained; for example, when looking to
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the turbine cascade performance, the flow rate is usually a fixed parameter whose variation needs to be
limited in a narrow range. The right-hand side of Figure 5 shows the results a non-linear constrained
optimization, by forcing the flow rate to stay within ±1% with respect to the baseline value. A specific
Kriging model is built for the constraint. It is observed how, after a significant reduction of the objective
function in the initial phase, the constraint prevents the optimization from progressing further, resulting
in a lower fitness of the outcome. It is also very interesting to note that the flow rate of the optimized
cascade achieved via non-constrained global optimization is, in fact, within the limits. This is probably
because the front part of the blade up to the throat is kept fixed and hence the flow rate is somehow im-
posed indirectly in the present chocked flow configuration. This seems to be a more effective procedure
when dealing with supersonic cascades.

4.2 Aerodynamic analysis
The flow configuration established in the cascade optimized via the non-constrained global strategy is
now discussed, in comparison to the baseline configuration and to another optimized case. This latter
configuration was obtained by applying an adjoint-based gradient method developed by Pini et al. (2014);
it was performed using the same objective function used here and was based on an inviscid flow solver;
the result here reported is, however, the high-fidelity calculation of that optimized configuration.

(a) Baseline (b) Adjoint Method (c) Genetic Algorithm

Figure 6: Comparison of the Mach number (bottom) and Entropy (top) distributions for (a) Base-
line, (b) Adjoint method (Pini et al. (2014)), and (c) present study using the global strategy.

The entropy and Mach number field on the blade-to-blade surface are reported for the three cases in
Figure 6. The effect of the optimization is clearly visible by comparing the optimized and baseline con-
figurations; in particular the minimization of the pressure oscillations downstream of the cascade leads
to a dramatic reduction of the main shock strength. Hence, the severe pressure gradient observed in the
baseline case is highly weakened and the weaving path of the blade wakes is almost eliminated. As a
result, the overall entropy generation is significantly reduced in the optimized cases. The two optimized
blades exhibit very similar flow configurations, even though the two approaches make use of very differ-
ent methods based on different flow models; this suggests that both the methods are converging towards
the same optimum, which is probably the global optimum for the present problem. The evolutionary op-
timization leads, in fact, to a slightly more uniform flow, due to the slightly weaker fishtail shock system
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at the blade trailing edge; such a shock system is not accurately captured by the inviscid flow model used
in the adjoint-based optimization (due to the missing displacement thickness of the boundary layers), and
this may explain the slight differences observed. However the outcome of the adjoint optimization still
remains an excellent result considering its extremely limited computational cost (less than an hour on a
standard PC) with respect to that of the present GA strategy (20 hours on a 15-processor cluster).

Figure 7: Isentropic Mach Number distribution
over the blade for the Baseline configuration, the
optimized blade using the Adjoint Method (Pini
et al. (2014)) and using genetic algorithms.

Figure 7 reports the pressure distribution on the
three blades, in the form of isentropic Mach num-
ber, and explains the reason for the improved per-
formance of the optimized configurations. Both
optimal blades move ahead the acceleration of the
flow on the suction side, just downstream of the
sonic throat and still within the bladed channel;
as a result the over-speed on the rear suction side
is limited and hence the subsequent diffusion is
eliminated. In this way the onset of the strong
shock observed in the baseline configuration is
prevented. Once again the two optimized configu-
rations show very similar trends, with local differ-
ences especially close to the trailing edge.

To quantify the impact of the optimization on the
cascade performance the Total Pressure Loss Co-
efficient is used, defined as the total pressure loss referred to the exit dynamic pressure (Y = PT,in−PT

PT,in−P ). The
results, considering an outlet placed at 2 chords downstream the blade (where the flow can be considered
mixed-out) are summarized in Table 1. It can be concluded that the more uniform flow achieved in the
downstream region leads to a relevant decrease of the total pressure loss coefficient, which reduces from
15.0 to 9.3%.

Baseline Adjoint Method GA
Y 0.15 0.11 0.093

Table 1: Total Pressure Loss Coefficient at two axial chords downstream the blade.

5. CONCLUSIONS

This paper has presented a novel package for the automatic design of ORC turbines based on an evolu-
tionary strategy. Detailed descriptions of all the steps of the optimization scheme have been provided,
namely the geometry parametrization, the high-fidelity flow solver and the genetic algorithm.

The blade shape is parametrized via B-Splines, whose local control capability allowed a detailed shape
reconstruction while preserving surface smoothness. The implementation of advanced high-fidelity flow
models, of paramount importance for ORC turbines, is easily attained thanks to the non-intrusive char-
acter of the evolutionary optimization strategy here used. To tackle the computational burden typical of
CFD-driven evolutionary strategies, the genetic algorithm is coupled to a surrogate model that reflects
the influence of the design variables on the objective function. Several optimization strategies have been
discussed to evaluate the convergence process and the associated computational cost.

Application to a supersonic ORC turbine nozzle has demonstrated that relevant performance improve-
ments can be achieved by maximizing flow uniformity downstream the blade. A further comparison, for
the same test case, against an alternative optimization approach has assessed the validity of the present
design methodology. Results have also allowed to quantify the impact of the application of high-fidelity
flow models within the optimization process. Future research will be addressed towards the applica-
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tion of the present shape-optimization tool to the design of novel turbine blade configurations for ORC
applications.
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