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ABSTRACT

Organic Rankine Cycles (ORCs) transform heat from low-temperature sources to electrical power. To
ensure optimal use of a heat source, the cycle needs to be tailored to the specific application. Tailoring
the cycle means optimizing both process and working fluid. Simultaneous optimization of process and
working fluid is enabled by the Continuous-molecular targeting (CoMT) framework. Herein, working
fluid properties are calculated by the perturbed-chain statistical associating fluid theory (PC-SAFT). The
pure component parameters representing the working fluid are relaxed during the optimization leading
to an efficient nonlinear program (NLP). The solution is an optimal combination of working fluid and
process. Due to the relaxation, the pure component parameters of the optimal working fluid, in gen-
eral, do not coincide with any real working fluid. Thus, real working fluids with similar properties are
searched for in the following step, the so-called structure-mapping. Currently, a Taylor approximation
of the objective function around the hypothetical optimal working fluid is used to estimate the objective
function value of real working fluids. The Taylor approximation does not account for changes in the
active set of constraints leading to occasional poor classification of the working fluids. To overcome this
shortcoming, we present an adaptive structure-mapping: An additional Taylor approximation is added
around a sampling point, if its approximation is poor. All Taylor approximations are combined using
inverse distance weighting. The resulting adaptive structure-mapping improves the quality of the re-
sult and efficiently identifies the best working fluids. The approach is demonstrated in a case study for
working fluid selection of a solar ORC.

1. INTRODUCTION

Organic Rankine Cycles enable the utilization of low-temperature heat to generate electrical power.
Low-temperature heat is available from different sources, e.g., solar (Tchanche et al., 2009), geother-
mal (Heberle and Brüggemann, 2010), biomass (Drescher and Brüggemann, 2007) or waste heat (Wang
et al., 2012). To ensure optimal use of a heat source, the cycle needs to be tailored to the specific appli-
cation. For tailoring the cycle, both have to be optimized: process and working fluid.
Today, working fluid selection and process optimization are commonly carried out separately following
a two-step approach (Tchanche et al., 2009; Drescher and Brüggemann, 2007; Quoilin et al., 2013): In a
first step, working fluid candidates are preselected by experience and based on heuristic guidelines defin-
ing favorable working fluid properties. In the second step, the process is optimized for each preselected
working fluid. For the preselection, a variety of different, partly conflicting heuristic criteria have been
proposed. Papadopoulos et al. (2010) combine therefore computer-aided molecular design (CAMD)
methods and multi-objective optimization for working fluid selection. Importantly, the proposed cri-
teria can not reflect the actual operating conditions. However, if the heuristic knowledge underlying

3𝑅𝐷 International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium



Paper ID: 75, Page 2

the preselection fail, meaningful and promising working fluids are excluded leading to suboptimal so-
lutions. Working fluid selection is inherently coupled to process optimization. Thus, recent reviews
(Quoilin et al., 2013; Bao, J. and Zhao, L., 2013) recommend including working fluid selection in pro-
cess optimization to obtain an overall optimal solution. However, the direct integration of these two
design tasks leads to a mixed integer nonlinear program (MINLP) of prohibitive size and complexity for
practical applications (Lampe et al., 2014). Recently, Papadopoulos et al. (2013) use a process-related
objective function. The working fluid properties are modeled by a cubic equation of state and combined
with a process model.
Simultaneous optimization of process and working fluid is achieved in the Continuous-molecular target-
ing framework by relaxation of the pure component parameters describing the working fluid (Bardow
et al., 2010; Lampe et al., 2014; Stavrou et al., 2014). Here, in a first step, a hypothetical working
fluid is identified maximizing a process-based objective function. Then, real working fluids with similar
properties are identified in the second step, the so-called structure-mapping. For this purpose, a Taylor
approximation around the hypothetical optimal working fluid is used to estimate the objective function
value of real working fluids. However, this local approximation suffers from occasional poor classifica-
tion of real working fluids. In this work, we present a method for adaptive structure-mapping to allow
for efficient identification of the best working fluids.
The paper is structured as follows: in section 2, the current CoMT framework is briefly reviewed. Our
method for adaptive structure-mapping is introduced in section 3. In section 4, the adaptive structure-
mapping is applied to a case study and the results are analyzed. Conclusions are drawn in section 5.

2. CONTINUOUS-MOLECULAR TARGETING FRAMEWORK

Selecting a suitable working fluid is a generic problem with applications beyond ORC processes. Bar-
dow et al. (2010) propose a generic approach, the so-called continuous-molecular targeting (CoMT).
The approach was first applied to achieve simultaneous optimization of solvents and processes. Lampe
et al. (2014) successfully applied the CoMT framework for the simultaneous process and working fluid
optimization of ORC processes (Figure 1).
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Figure 1: Simultaneous optimization of working fluid and process using the CoMT framework

To allow for the integrated process and working fluid optimization, we exploit the rich molecular picture
underlying the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (Gross
and Sadowski, 2001). PC-SAFT is a model of the Helmholtz energy, which ensures a consistent picture
of all equilibrium properties of the working fluid. A set of typically up to seven pure component param-
eters describes each working fluid (Stavrou et al., 2014). For simplicity, non-polar and non-associative
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working fluids are considered in this work. Each working fluid is then described by three parameters:
the segment number 𝑚, the segment diameter 𝜎, and the segment dispersion energy 𝜖/𝑘.
A direct formulation of the integrated optimization using the pure component parameters as variables
leads to a MINLP of prohibitive size and complexity, because a discrete degree of freedom is added to
the problem for each real working fluid. Here, the MINLP is avoided by relaxing the pure component
parameters during the simultaneous optimization of process and working fluid. Relaxation transforms
the MINLP into a NLP of the form

max
𝑥,𝑦

𝑓(𝑥, 𝑦)

𝑠.𝑡. 𝑔(𝑥, 𝑦) ≤ 0
ℎ(𝑥, 𝑦) = 0 (1)
𝐴𝑦 ≤ 𝑏
𝑥min ≤ 𝑥 ≤ 𝑥max ∈ Rn

𝑦min ≤ 𝑦 ≤ 𝑦max ∈ Rm

where 𝑥 denotes the process variables, 𝑦 denotes the pure component parameters and 𝑓(𝑥, 𝑦) denotes the
objective function to be optimized. Here, any objective function can be employed, which is based on
equilibrium thermodynamics. First approaches are available to even calculate transport properties based
on PC-SAFT (Novak, 2011; Lötgering-Lin and Gross, 2015). The integration of such approaches would
allow for a thermoeconomic objective function still requiring only PC-SAFT parameters to describe the
working fluid. Without loss of generality, maximization is considered. The inequality and equality con-
straints of the process as well as PC-SAFT are formed by 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦). The solution of Problem
(1) is a hypothetical optimal working fluid 𝑦∗ and the corresponding optimal process parameters 𝑥∗. In
general, the hypothetical optimal working fluid does not coincide with a real fluid. To identify real fluids,
a database of pure component parameters is used in this work. The values of the database can, in turn,
be used to constrain the search space for optimization. For this purpose, a convex hull around the pure
component parameters of real working fluids 𝑦k of a database is used. The convex hull is represented by
the set of linear constraints 𝐴𝑦 ≤ 𝑏 in Problem (1).
In the second step, real working fluids with similar properties as the hypothetical optimal working fluid
are identified (Figure 1). Currently, a second degree Taylor approximation around the hypothetical opti-
mal working fluid is used to estimate the objective function value of real working fluids (Bardow et al.,
2010; Lampe et al., 2014; Stavrou et al., 2014). For this purpose, it is necessary to rewrite the objective
function 𝑓(𝑥, 𝑦) as

̃𝑓(𝑦) = max
𝑥

𝑓(𝑥, 𝑦)
𝑠.𝑡. 𝑔(𝑥, 𝑦) ≤ 0 (2)

ℎ(𝑥, 𝑦) = 0
𝑥min ≤ 𝑥 ≤ 𝑥max ∈ Rn.

From Problem (2), the Taylor approximation around optimum values 𝑦∗ is calculated:

𝑇 (𝑦) = ̃𝑓(𝑦∗) + 𝐽(𝑦∗)(𝑦 − 𝑦∗) + 1
2(𝑦 − 𝑦∗)T𝐻(𝑦∗)(𝑦 − 𝑦∗). (3)

Here, 𝐽(𝑦∗) denotes the Jacobian and 𝐻(𝑦∗) the Hessian of ̃𝑓(𝑦) at the sampling point 𝑦∗. Thus, the
approximation of the performance for a working fluid is solely characterized by pure component param-
eters 𝑦𝑘. Based on the approximation 𝑇 (𝑦k), a ranking of potential working fluids is obtained. Each
working fluid is classified by the rank 𝑟 of the ranking. However, the Taylor approximation does not
account for changes in the active set of constraints (Lampe et al., 2014), whereby a substantial devia-
tion between the Taylor approximation and the real objective function value occurs (Figure 2a). Thus,
working fluids are classified wrongly. To overcome these shortcomings, an adaptive structure-mapping
is presented.
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3. ADAPTIVE STRUCTURE-MAPPING

The adaptive structure-mapping iteratively identifies sampling points to adapt the approximation. In
section 3.1, the method for selection of additional sampling points is presented. The adaption of the
current approximation is detailed in section 3.2.

3.1 Algorithm
The key idea for the adaption of approximation is to apply a Taylor approximation not only once at the
hypothetical optimal working fluid, but also at additional sampling points. The individual Taylor ap-
proximations 𝑇i(𝑦) are combined to an adapted approximation 𝐴(𝑦) (Figure 2). The sampling points
are selected in regions with a substantial deviation between the current approximation and the objective
function. Through an iterative selection of suitable sampling points, the approximation, and therefore
the structure-mapping, is adapted until a sufficient accuracy is achieved.
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Figure 2: Qualitative illustration of the adapted approximation of the objective function ̃𝑓(𝑦)̃𝑓(𝑦)̃𝑓(𝑦)
(black, solid) in the mapping step: a) Taylor approximation 𝑇 (𝑦)𝑇 (𝑦)𝑇 (𝑦) (red, dashed) around the op-
timum 𝑦∗𝑦∗𝑦∗ (marker ○○○), b) adapted approximation 𝐴(𝑦)𝐴(𝑦)𝐴(𝑦) (red, dashed) with an additional sampling
point (marker ×××) in a region with previous substantial deviation between the objective function
and the approximation.

The starting point is the ranking based on the Taylor approximation around the hypothetical optimal work-
ing fluid (step 1 in Figure 3). The selection of the next sampling point is performed by a systematic anal-
ysis of the current ranking (step 2). Beginning with the highest ranked working fluid 𝑟 = 1 and following
the order of the ranking , the real objective function value ̃𝑓(𝑦r) of the r-th ranked working fluid 𝑦r is cal-
culated from Problem (2) (step 2a). This procedure continues, until the absolute difference Δ𝐴r between
approximation 𝐴(𝑦r) and real objective function value ̃𝑓(𝑦r) exceeds a threshold Δ𝐴max (step 2b)

Δ𝐴r = |𝐴(𝑦r) − ̃𝑓(𝑦r)| > Δ𝐴max. (4)

Here, 𝑟 denotes the rank of the working fluid in the current ranking. In this work, the threshold Δ𝐴max
is set to 5 % of the objective function value of the hypothetical optimal working fluid. If the absolute
difference Δ𝐴r exceeds the threshold, the pure component parameters of this r-th ranked working fluid
are selected as additional sampling point. The approximation 𝐴(𝑦) is adapted by taking a Taylor ap-
proximation of the additional sampling point into account (step 3, see section 3.2 for details). A revised
ranking of potential working fluids is obtained based on the adapted approximation (step 4). Subse-
quently, a termination criterion is checked (step 5). The algorithm stops, if for the first 15 ranks of the
revised ranking a process optimization is performed in a previous iteration. If the termination criterion is
not fulfilled, the algorithm continues at step 2. Beginning with the highest ranked working fluid 𝑟 = 1,
the algorithm analyzes the revised ranking systematically to select one more additional sampling point.
Thus, the approximation is iteratively adapted to the objective function, since a region with previous
poor approximation is improved by an additional Taylor approximation in each iteration. As a result, the
method yields a ranking based on the real objective function values of the already calculated working
fluids and the approximations of all further working fluids. The adaptive structure-mapping improves
the quality of the ranking and allows for efficient identification of the best working fluids.
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Figure 3: Flow chart for adaptive structure-mapping.

3.2 Adaptive approximation
The adaptive approximation 𝐴(𝑦) is a weighted sum of individual Taylor approximations 𝑇i(𝑦). The
Taylor approximations 𝑇i(𝑦) are calculated by Equation (3), whereby the pure component parameters
of the hypothetical optimal working fluid 𝑦∗ are replaced by the sampling points 𝑦i. The individual
Taylor approximations 𝑇i(𝑦) around the sampling points 𝑦i are multiplied by a weighting factor 𝑤∗

i (𝑦)
and combined to an adapted overall approximation 𝐴(𝑦) of the objective function

𝐴(𝑦) =
𝑆

∑
i=1

𝑤∗
i (𝑦) ⋅ 𝑇i(𝑦), (5)

whereby 𝑆 denotes the number of sampling points. The weighting factor 𝑤∗
i (𝑦) increases the influence

of Taylor approximation 𝑇i(𝑦) the closer the pure component parameters 𝑦 are to the corresponding
sampling point 𝑦i. A suitable method for this purpose is the so-called inverse distance weighting. In this
work, the distance between two points in the three-dimensional space spanned by the pure component pa-
rameters 𝑦 = (𝑚, 𝜎, 𝜖/𝑘)T is considered. The pure component parameters have different magnitudes and
units. To prevent effects of different scaling, the pure component parameters are normalized to one by

𝑚n = 𝑚 − 𝑚min
𝑚max − 𝑚min

, 𝜎n = 𝜎 − 𝜎min
𝜎max − 𝜎min

, (𝜖/𝑘)n = (𝜖/𝑘) − (𝜖/𝑘)min
(𝜖/𝑘)max − (𝜖/𝑘)min

, (6)

yielding normalized pure component parameters 𝑦n = (𝑚n, 𝜎n, (𝜖/𝑘)n)T. Here, parameters 𝑦j,min and
𝑦j,max are the smallest and largest value of the pure component parameters of the database respectively.
The inverse distance 𝑑-p

i (𝑦) of the Taylor approximation 𝑇i(𝑦) around a sampling point 𝑦i is calculated
by (Dumitru et al., 2013):

𝑑-𝑝
i (𝑦) = 1

‖𝑦n − 𝑦n,i‖𝑝 . (7)

The weighting factor depends on the so-called power parameter 𝑝. The best results are typically obtained
for 𝑝 = 2 (Dumitru et al., 2013). To ensure that the approximation at the sampling point matches the
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objective function value, the sum of all inverse distances is normalized to one leading to a weighting
factor 𝑤∗

i (𝑦):

𝑤∗
i (𝑦) = 𝑑-𝑝

i (𝑦)
∑𝑆

u=1 𝑑-𝑝
u (𝑦)

. (8)

The approximation 𝐴(𝑦) does not explicitly account for changes in the active set of constraints. However,
the adaption captures the behavior of the objective due to the changes in the active set.

The adaptive approximation improves the solution but it can also produce suspicious solution as shown in
the following. Figure 4 illustrates a qualitative one-dimensional example for the objective function and its
approximation. A second degree Taylor approximation around a sampling point in a region with strong
convex curvature leads to unphysical approximation and slow convergence of the adaptive structure-
mapping (Figure 4a). This difficulty is circumvented by using a first degree Taylor approximation instead
of a second degree Taylor approximation in regions with convex curvature (Figure 4b).
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Figure 4: Approximation 𝐴(𝑦)𝐴(𝑦)𝐴(𝑦) (red, dashed) of the objective function ̃𝑓(𝑦)̃𝑓(𝑦)̃𝑓(𝑦) (black, solid) with a)
second degree and b) first degree Taylor approximation 𝑇i(𝑦)𝑇i(𝑦)𝑇i(𝑦) (blue, dotted) around a sampling
point in a region with strong convex curvature (marker ×××)

In the multidimensional case, a function is considered to be concave, if a concave curvature exists in all
spatial directions. In the major part of the considered parameter space, the objective function shows both
concave and convex curvatures in the various spatial directions. If first degree Taylor approximations are
used whenever one spatial direction has convex curvature, a first degree Taylor approximation is chosen
for almost all sampling points. This leads to slow convergence of the adaptive structure-mapping and,
thus, longer computing time, since the approximation is much less accurate.
For this reason, we classify the vicinity of a sampling point as concave, if possible convex curvatures
in all directions are negligible compared to the concave curvature. Curvature is evaluated from the
eigenvalues of the Hessian 𝐻̃(𝑦i) of the objective function ̃𝑓(𝑦). In order to ensure comparability of
the eigenvalues, the Hessian is transformed to the normalized parameter space (Equation (6)). Positive
eigenvalues characterize convex and negative concave curvature; the magnitude is a measure for the
strength of the curvature. We allow convex curvature, if the highest eigenvalue 𝜆max of the normalized
Hessian is at least an order of magnitude smaller than the amount of the lowest eigenvalue 𝜆min. With
this restriction, the Hessian 𝐻(𝑦i) in Equation (3) is

𝐻(𝑦i) = { 𝐻̃(𝑦i), if 10 ⋅ 𝜆max < |𝜆min|
03,3, otherwise.

(9)

Using this heuristic, more second degree Taylor approximations are selected, while avoiding unphysical
impact of the convex curvature. This curvature approach proves suitable in all case studies.

4. CASE STUDY – SMALL-SCALE SOLAR THERMAL ORC SYSTEM

The adaptive structure-mapping is applied to the optimization of a ORC process with direct solar evap-
oration based on Casati et al. (2011). A recuperator is used to increase the efficiency. The net power

3𝑅𝐷 International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium



Paper ID: 75, Page 7

output 𝑃net is considered as objective function. The degrees of freedom in the process model are: pres-
sure of the condenser 𝑝cond, pressure of the evaporator 𝑝evap, degree of superheating Δ𝑇sh and mass flow
rate of the working fluid 𝑚̇wf. We assume a fixed heat flow of the solar field 𝑄̇solar at the temperature 𝑇Q
(Table 1). A minimal temperature difference in the heat exchangers Δ𝑇pinch is imposed to ensure feasible
heat transfer. The pressure levels in the cycle are further constrained by minimal and maximal absolute
pressures 𝑝min and 𝑝max, respectively.

Table 1: Solar source specifications and constraints for the case study

Parameter Symbol Value
temperature of heat source 𝑇Q 380 ∘C
heat flow of the solar field 𝑄̇solar 463 kW
temperature of heat sink 𝑇S 80 ∘C
maximal absolute pressure 𝑝max 50 bar
minimal absolute pressure 𝑝min 0.05 bar
minimal temperature difference Δ𝑇pinch 10 K
isentropic turbine efficiency 𝜂T 80 %
generator efficiency 𝜂G 95 %
isentropic pump efficiency 𝜂P 70 %
mechanic pump efficiency 𝜂P,mech 90 %

The adaptive structure-mapping is applied to a database of 223 working fluids. In order to evaluate the
results of the structure-mapping, an individual process optimization for all working fluids of the database
is performed. A real ranking is obtained, which serves as an unambiguous measure for the quality of
the ranking from the adaptive structure-mapping. Thus, the database is comparatively small to allow
for an efficient validation. The database can easily be extended to consider more fluids. Alternatively,
computer-aided molecular design can be employed for the design of working fluids (Lampe et al., 2015).
For this case study, the adaptive structure-mapping terminates after two iterations, i.e., three sampling
points are used for the overall approximation. All sampling points are approximated by a second degree
Taylor approximation. To evaluate the results of the adaptive structure-mapping, the ranking after each
iteration is compared to the real ranking. Spearman’s rank correlation coefficient 𝜌s serves as a measure
for the correlation (Puth et al., 2015): The closer the correlation coefficient 𝜌s is to one, the better is
the correlation. The corresponding real rank is plotted for the 60 highest ranked working fluids of the
structure-mapping (Figure 5).
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Figure 5: Comparison of result of the CoMT-CAMD approach (black, solid) with one (a), two (b)
and three (c) sampling points and the ideal result (red, dotted)

The original structure-mapping with only one Taylor approximation around the hypothetical optimal
working fluid identifies the best two working fluids but shows large deficits (Figure 5a): Many working
fluids are overestimated and ranked too well. Here, Spearman’s rank correlation coefficient is 𝜌s = 0.44.
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The result with two sampling points shows a better correlation (𝜌s = 0.74, Figure 5b). In particular, the
top 20 are already well captured. The final result with three sampling points identifies the top 20 nearly
in the correct order (𝜌s = 0.83, Figure 5c).

The original structure-mapping with one Taylor approximation around the hypothetical optimal working
fluid identifies only 2 working fluids of the top 10 (4 of the top 20). This result is improved significantly
by the adaptive structure-mapping: all working fluids of the top 10 and 18 of the top 20 are identified
correctly. The improvement is archived by a more accurate approximation of the objective function in
the relevant region. To visualize the functionality of the adaptive structure-mapping, the working fluid
ethylcyclohexane is examined (𝑚 = 3.0, 𝜎 = 4.0 Å, 𝜖/𝑘 = 283.8 K). Ethylcyclohexane is ranked 9th in
the real ranking. Figure 6 shows the optimal net power output ̃𝑓 as function of the segment number 𝑚 for
constant segment diameter 𝜎 and segment dispersion energy 𝜖/𝑘 corresponding to the pure component
parameters of ethylcyclohexane. The pure component parameters of the hypothetical optimal working
fluid 𝑦∗ are 𝑚∗ = 1.8, 𝜎∗ = 4.1 Å, and (𝜖/𝑘)∗ = 408.6 K and are not in the plane of Figure 6. Addition-
ally, the approximation function 𝐴(𝑦) with one, two, and three sampling points are plotted. The Taylor
approximation around the optimum is not sufficient to approximate the objective function in this region.
A substantial deviation between the approximation 𝐴(𝑦) and the objective function ̃𝑓(𝑦) occurs: ethyl-
cyclohexane is underestimated and ranked 69th. However, the approximation with three sampling points
corresponds well to the objective function. Ethylcyclohexane is correctly ranked 9th in the final ranking.
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Figure 6: Optimal net power output ̃𝑓 ̃𝑓 ̃𝑓 (black, solid) and the approximation function 𝐴(𝑦)𝐴(𝑦)𝐴(𝑦) with
one (red, dotted), two (gray, dash-dotted) and three (blue, dashed) sampling points as function
of the segment number 𝑚𝑚𝑚 for constant segment diameter 𝜎 = 4.0 Å𝜎 = 4.0 Å𝜎 = 4.0 Å and segment dispersion en-
ergy 𝜖/𝑘 = 283.8 K𝜖/𝑘 = 283.8 K𝜖/𝑘 = 283.8 K corresponding to the pure component parameters of ethylcyclohexane. The
optimal values are𝑚∗ = 1.8𝑚∗ = 1.8𝑚∗ = 1.8, 𝜎∗ = 4.1 Å𝜎∗ = 4.1 Å𝜎∗ = 4.1 Å and (𝜖/𝑘)∗ = 408.6 K(𝜖/𝑘)∗ = 408.6 K(𝜖/𝑘)∗ = 408.6 K.

Finally, the effectiveness of the method is evaluated based on the required computing effort. The number
of function evaluations of the objective function in the optimizations for both the adaptive structure-
mapping and the calculation of the real ranking are compared. For the adaptive structure-mapping,
the function evaluations of the CoMT-optimization, the calculation of Jacobians and Hessians by finite
differences, and the calculation of real objective function values are considered. For the real ranking,
the function evaluations to calculate the individual process optimizations of each working fluid of the
database are counted.
The calculation of the real ranking requires 31,537 function evaluations. The calculation of the case
study by the adaptive structure-mapping takes 3,951 function evaluations, which corresponds to savings
of 87.5 %. Thus, the adapted CoMT framework is far more efficient than an individual optimization
of each working fluid to identify the best working fluids. Considering a larger database, the number
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of function evaluations to calculate the real ranking would increase with the number of working fluids.
In contrast, in our experience, there is no direct correlation between the number of working fluids and
function evaluations in the CoMT framework, so that overall, the efficiency of the CoMT framework is
expected to increase.
If the heuristic regarding the negligible convex curvature is not made (see Section 3.2), the adapted CoMT
framework requires 12,805 function evaluations and 10 sampling points to identify the ten best working
fluids. In this case, five first degree Taylor approximations and five second degree Taylor approximations
are employed. If exclusively first degree polynomials are used, the CoMT framework requires 17,838
function evaluations and 24 sampling points. The results demonstrate the advantage of using second
degree polynomials and the heuristic regarding negligible convex curvature.

5. CONCLUSIONS

Simultaneous design of ORC process and working fluid is enabled by the Continuous-molecular tar-
geting framework. However, mapping of the targets onto real working fluids occasionally failed. For
this purpose, an adaptive structure-mapping is presented to identify the best working fluids for ORC
processes based on continuous-molecular targets. The approximation used for the structure-mapping is
iteratively adapted by combining several Taylor approximations around different sampling points. A
method to select sampling points is presented and a heuristic for the selection of the degree of the Taylor
approximations is proposed. The result of the method is a ranked set of working fluids. The adaptive
structure-mapping improves the quality of the ranking and allows for efficient identification of the best
working fluids.
The adaptive structure-mapping is successfully applied to a case study, where the original mapping only
identifies 2 working fluids out of the top 10 correctly. The adaptive method correctly identifies all work-
ing fluids of the top 10. Thereby, the adaptive structure-mapping is more efficient than an individual
optimization of each working fluid: In this case study, the function evaluations are reduced by 87.5 %.

NOMENCLATURE

𝐴 approximation function (-) 𝑇 Taylor approximation (-)
𝑑-𝑝 inverse distance (-) 𝑤∗ normalized weighting factor (-)
𝑓 , ̃𝑓 objective function (-) 𝑥 process variables (-)
𝑔 inequality constraints (-) 𝑥∗ optimal process parameters of 𝑦∗ (-)
𝐻 , 𝐻̃ Hessian (-) 𝑦 pure component parameters (-)
ℎ equality constraints (-) 𝑦∗ hypothetical optimal working fluid (-)
𝐽 Jacobian (-) 𝜖/𝑘 associating energy (K)
𝑚 segment number (-) 𝜆 eigenvalues (-)
𝑝 power parameter (-) 𝜌s rank correlation coefficient (-)
𝑆 number of sampling points (-) 𝜎 segment diameter (Å)

Subscript
i sampling point min minimal
k real working fluid of the database n normalized
max maximal r rank
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