

Session 4: Thermoeconomics I

Techno-Economic Analysis of Sub-critical ORC with optimized Heat Transfer Process

Wei Liu, Dominik Meinel, Christoph Wieland and Hartmut Spliethoff Institute for Energy Systems Technische Universität München

3rd International Seminar on ORC Power Systems

October 12-14, 2015, Brussels, Belgium

Agenda

1. Motivation

2. Approach

- Input Parameters
- Thermodynamic Model
- Economic Model
- Target Function

3. Results

4. Conclusions & Future works

1. Motivation

A thermodynamically optimal heat transfer process for sub-critical ORC.

- + High exergetic efficiency
- + High system efficiency
- High evaporation pressure
- Large heat transfer area
- Technically feasible?
- Economically viable?

2. Approach - Overview

- Thermodynamic- and economic-related input parameters.
- Thermodynamic model based on a simple sub-critical ORC and OHST theory.
- Economic model based on <u>geothermal power plant</u> in Germany.
- LCOE as the main Obj. Function as it links thermodynamics with economics.

2. Approach – Input Parameters

Thermodynamic-related	Economic-related
 Heat Source Thermal water, 140 °C, 10 bar, 50 MW. 	 Initial investment cost Drilling Equipment Costs
ORC Process _ Working conditions	 Others (Construction, labor, etc.)
 machinery efficiencies Plate Heat Exchange 	 Operation & Maintenance
 Cooling Unit Cooling water, 8 °C, 1 bar 	 Generals Annual discount rate: 8% Lifetime: 25 years Operation hrs: 8000 hrs
 Reference state – 8 °C, 1 bar 	

2. Approach – Thermodynamic Model (1)

Thermodynamic description

• System efficiency

 $\eta_{sys} = \eta_{th} \cdot \eta_{HT}$

where

$$\eta_{th} = P_{el,net} / Q_{HT}$$

$$\eta_{HT} = Q_{HT} / Q_{hs}$$

- Practical means to improve η_{sys}
 - Increase evp. temperature $T_4 \rightarrow \eta_{th}$
 - Decrease thermal water outlet temperature $T_8 \rightarrow \eta_{HT} \uparrow$

2. Approach – Thermodynamic Model (2)

^{*} Liu, et al. Optimal heat source temperature for thermodynamic optimization of sub-critical ORCs. Energy 2015.

2. Approach – Thermodynamic Model (3)

Working fluid screening*

90°C \leq T _c \leq 160°C (Heuristics for low- temperature ORC applications)	n Point Position not be at prator inlet under tions: h p_{evp} (0.9 $\cdot p_c$)	Evaporation pressu 0.9·p _c ≤ 30 bar	ire Environment, Safety
 (Heuristics for low-temperature ORC applications) Must revapore condition 1. High 2. ΔT_{pr} 	not be at prator inlet under tions: h p _{evp} (0.9·p _c)	Evaporation pressu 0.9·p _c ≤ 30 bar → Taking into	re Environment, Safety
applications) conditi 1. High 2. ΔT _{pr}	tions: h p _{evp} (0.9⋅p _c)	0.9·p _c ≤ 30 bar	Environment, Safety
applications) conditions: 1. High p_{evp} (0.9· p_c) 2. $\Delta T_{pp} = [4,15]$	factor in manufacturing costs	Toxicity, Flammability ODP = 0 → Destructive effect of non-ODP fluids on Ozone layer	

* Screening process based on 121 pure fluids from REFPROP 9.0.

2. Approach – Thermodynamic Model (4)

2. Approach – Economic Model

* Schlagermann, P., Exergoökonomische Analyse geothermischer Strombereitstellung am Beispiel des Oberrheingrabens. 2015

3rd International Seminar on ORC Power Systems

2. Approach – Economic Model

* Schlagermann, P., Exergoökonomische Analyse geothermischer Strombereitstellung am Beispiel des Oberrheingrabens. 2015

2. Approach – Target Function

Thermodynamic optimization: max <u>System Efficiency</u>

$$\eta_{\text{sys}} = \frac{P_{\text{el,net}}}{\dot{Q}_{\text{hs}}}$$

3. Results – Fluid Screening

3. Results – Parameter Variation

3. Results – Levelized Cost Of Electricity

3. Results – Optimal cases

3rd International Seminar on ORC Power Systems

4. Conclusions & Future works

- ✓ Technically feasible
 - Suitable working fluid selection \rightarrow pinch point location not at evaporator inlet;
 - System efficiency strongly influenced by ΔT_{pp} .
- ✓ Economically viable
 - An optimum found for ΔT_{pp} where LCOE is minimized;
 - Despite higher PECs, a lower LCOE is resulted.

To-do

- Pressure drops to be considered through the ORC loops;
- Heat transfer mechanism for near-critical states

Thanks for your attention!

Questions?

Session 4: Thermoeconomics I

Techno-Economic Analysis of Sub-critical ORC with optimized Heat Transfer Process

Wei Liu, Dominik Meinel, Christoph Wieland and Hartmut Spliethoff Institute for Energy Systems Technische Universität München

3rd International Seminar on ORC Power Systems

October 12-14, 2015, Brussels, Belgium

Appendix – The thermodynamic-related inputs

Heat source temperature	The	140 °C	Cooling water temperature	Tau	8 °C
Heat source pressure	p_{hs}	10 bar	Cooling water pressure	\mathcal{P}_{cw}	1 bar
Heat source thermal amount	\dot{Q}_{hs}	50 MW	Isentropic efficiency Turbine	$\eta_{is turbine}$	0.85
Evaporating pressure	p_{evn}	< 30 bar	Isentropic efficiency Pump	$\eta_{is numn}$	0.75
Pinch point in heat exchanger	$\Delta T_{nn HE}$	Variable	Mechanical efficiency	η_{mech}	0.98
Condensation temperature	T_{cond}	20 °C	Generator/Motor efficiency	η_G/η_M	0.95
Pinch point in the condenser	ΔT_{cond}	5 K	Reference state	p_0, T_0	1 bar, 8 '

Appendix – Qualitative demonstration of OHST

Appendix – Tendency prediction of η_{sys} for difference cases

Appendix – Optimal Heat Source Temperature

Max η_{sys} Thermodynamic optimizationbased on OHST theory*CasePinch point
Position1. $T_{hs} < OHST$ Evaporator
inletmax η_{sys} at an
intermedium

OHST is defined as a heat source temperature, for which system efficiency of ORC almost reaches maximum with a fluid at a constant sub-critical evp. pressure.

OHST depends on fluid's physical properties and pinch point temperature.

* Liu, et al. Optimal heat source temperature for thermodynamic optimization of sub-critical ORCs. Energy 2015.

p_{evp}

Appendix – Heat transfer process

Aim:1) exact pinch point position; 2) required surface area.

Heat Transfer Process

- Asummptions:
 - Stationary process,
 - Zero pressure drop.
- Plate Heat Exchanger
 - three-pass counter flow,
 - Predefined geometrics for plates.
 → adjustable # of plate.
- Mathematical Model
 - Discretized heat transfer process
 - Single phase fluid Chisholm and Wanniarachchi
 - Multiple phase fluid
 Yan and Lin for evaporation*
 Yan for condensation

* Evaporation model is modified for a continuous heat transfer coefficient.

Appendix - LCOE

Net **P**resent **V**alue (NPV): the sum of the present values of incoming and outgoing cash flows over a period of time.

$$K_0 = -I_0 + \sum_{t=1}^n \frac{E_t - A_t}{(1+i)^t}$$

- K_0 : NPV,
- I_0 : Investment,
- E_t : Incoming cash of year t,
- A_t : outgoing cash of year t,
- *t*: year of operation,
- *n*: period of operation,
- *i*: annual interest.

Asumming $K_0 = 0$, one has:

