Wave speed measurements in non-ideal compressible flows

Using the Flexible Asymmetric Shock Tube (FAST)

Tiemo Mathijssen¹, M. Gallo¹, E. Casati¹, A. Guardone², P. Colonna¹

¹ Delft University of Technology, Propulsion and Power
² Politecnico di Milano, Department of Aerospace Science

Outline

- Non-ideal compressible fluid dynamics (NICFD)
- Flexible Asymmetric Shock Tube (FAST) setup
- N₂ measurements
- D6 siloxane measurements
- Conclusions & Future Work

Example: propagation of a weak pressure wave (piston)

Shock formation and the role of Γ Р х wave propagation speed: w = u + cFindmtl. derivative: $\Gamma \equiv 1 - \frac{v}{c} \left(\frac{\partial c}{\partial v} \right)$ sound speed: $c^2 \equiv -v^2 \left(\frac{\partial P}{\partial v}\right)_{c}$

TUDelft

ORC windtunnel nozzle design

A. Guardone, A.Spinelli, V. Dossena, "Influence of Molecular Complexity on Nozzle Design for an Organic Vapor Wind Tunnel", *J. Eng. Gas Turbines Power* 135(4), 042307, Mar 18, 2013.

Non classical effect in a "simplified" turbine cascade

Inflow:

- M = 1.6
- Same reduced tmd state

P. Colonna and S. Rebay, ``Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver," Int. J. Numer. Meth. Fl., vol. 46, no. 7, pp. 735-765, 2004.

TUDelft

Experiments in NICFD

- Borisov (1983)
- Argrow (2000)
- TU Delft (2014-2015)
- Milano (2014-2015)

Delft: Flexible Asymmetric Shock Tube (FAST)

The FAST: the concept

- Ludwieg Tube
- speed-of-flight measurement of wave
- D6 Siloxane as working fluid

The FAST: the concept

- Ludwieg Tube
- speed-of-flight measurement of wave
- D6 Siloxane as working fluid

TUDelft

Nitrogen experiment

Pressure	4.01 bar
Temperature	25.8 °C
Г	1.2

$$w = \frac{\Delta x}{\Delta t}$$
$$\Delta x = 0.3 m$$

TUDelft

Nitrogen experiment

Nitrogen experiment

Nitrogen experiment

Nitrogen experiment

Speed of sound	
Theory	350 m/s
Shifted curve	349 m/s
Linear fit	346 m/s

Average accuracy5% wave speed1-2% speed of sound

D6 siloxane experiment

Pressure	1.27 bar
Temperature	298 °C
Г	0.91

Conclusions & Future work

- Non-Ideal Compressible Fluid Dynamics
- FAST Ludwieg tube commissioned
- Pressure and Temperature regulated independently
- Measurements of Wave propagation speed
 - 5% 8% accuracy
- Method to determine speed of sound
 - 1% 2% accuracy
- Next: Measurements at lower Γ

Thank you for your attention!

Questions?

T. Mathijssen, M. Gallo, E. Casati, N.R. Nannan, C. Zamfirescu, A. Guardone, P. Colonna, "The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids", Exp. In Fluids 56:195, October 2015

