ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

Vittorio Tola

DIMCM, Dept of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy email:vittorio.tola@dimcm.unica.it

Introduction

Carbon capture and storage (CCS) is an important tool for the power sector to reduce CO₂ emissions.

CCS alone will account for 19% of the total CO_2 emissions reduction in 2050.

Coal-fired steam and natural gas-fired power plants are expected to contribute to about 65 and 30 % of the total installed power generation capacity equipped with CCS.

CO₂ capture from power plants is both very capital- and energy-intensive.

CO₂ removal causes substantial efficiency penalties to the power plant:

- 1. Thermal energy, typically at 140 °C, for driving the desorption reaction in the reboiler column.
- 2. Electrical energy for driving exhaust gas fans and solvent circulation pumps,
- 3. Electrical energy for compressing and pumping CO_2 to high pressure for transport and storage. Near-term CO_2 removal system based on chemical solvents are expected to reduce plant efficiency in the order of 8-

12 percentage points at 90 % CO₂ capture.

2

R&D projects are dedicated to the development of more efficient or less expensive capture processes. Exhaust gas recirculation (EGR) was proposed for NGCC to increase the CO_2 concentration and reduce costs. Efficiency losses are reduced by about 1% pt and capital costs for the capture unit are reduced by 20-30%.

Little attention was given to recovering low temperature heat rejected from capture plants and the auxiliaries.

This paper examines performance impact of recovering low temperature heat with an Organic Rankine Cycle (ORC) integrated with a post-combustion CO₂ capture for coal-fired steam plants and natural gas combined cycle.

The study is based on complex simulation models specifically developed through **HYSYSTM** and **Gate-CycleTM** commercial softwares.

PC power plant

Large scale **PC (Pulverized coal-fired)** steam power plant (400 MW)

3

CO₂ removal system

Complex configuration with CO_2 removal and compression sections •Post combustion capture system based on 30 wt-% mixture of MEA and water

PC and NGCC reference power plants

Reference PC and NGCC power plants

		PC	NGCC
Fuel chemical power input	MW	1000.0	1000.0
Flue gas treatment requirements	MW _t	13.3	/
Net power output	MW	420.2	592.0
Net efficiency	%	41.5	59.2
Flue gas mass flow	kg/s	395.5	877.2
CO_2 molar fraction in flue gas	%	15.0	4.1
CO ₂ emitted by the plant	kg/s	87.6	55.2
CO ₂ specific emissions	g/kWh	735.9	336.0

CO₂ removal rate effects on electrical power and thermal energy requirements

PC

CO ₂ removal rate	70%	90%
Electrical power (MW)	5.3	6.1
Thermal energy (MJ/kg _{CO2})	3.50	3.75

NGCC

CO ₂ removal rate	70%	90%
Electrical power (MW)	8.1	9.0
Thermal energy (MJ/kg _{CO2})	3.72	4.58

CO₂ removal rate effects on CO₂ captured and emitted

Reference CO₂ emission :

•PC	736 g/kWh
•NGCC	336 g/kWh

PC

CO ₂ removal rate	70%	90%
CO ₂ captured (g/kWh)	608	820
CO ₂ emitted (g/kWh)	261	91

NGCC

CO ₂ removal rate	70%	90%
CO ₂ captured (g/kWh)	271	376
CO ₂ emitted (g/kWh)	116	42

CO₂ removal rate effects on power and efficiency

Reference net efficiency: PC 41.3% NGCC 59.2%

90%CO, net efficiency:

33.3% NGCC 47.5%

PC

Power reduction	
Amine heat requirements	77.2%
Capture system electrical cons.	7.7%
CO ₂ compression	15.1%

PC

CO ₂ removal rate	0%	70%	90%
Net power (MW)	420.2	354.8	337.7
Net efficency decrease (%)	*	15.6	19.6

NGCC

CO ₂ removal rate	0%	70%	90%
Net power (MW)	592.0	513.2	475.4
Net efficency decrease (%)	*	13.3	19.7

Exhaust Gas Recirculation (EGR)

Exhaust gas partially extracted at the end of HRSG Exhaust gas cooled down to near-ambient conditions in an EGR cooler Exhaust gas recirculated back to the compressor of gas turbine

EGR penalizes compressor performance:

- Higher temperature of air-flue gas mixture
- Higher heat capacity of more humid recirculated gas

EGR improves CO₂ capture efficiency and reduces capture equipment costs:

- Increase of CO₂ concentration in the flue gas
- Reduced size of CO₂ capture unit
- Reduced energy requirements and equipement costs for the amine system

EGR influence on plant power and efficiency

EGR Variables:

EGR ratio (0-0.5) NGCC-CCS with 90% CO_2 capture EGR cooler outlet temperature =30 °C

ORC fluids

•Carbon dioxide (CO ₂)	Temperature (°C)	Pressure (bar)	Pressure (bar)	Pressure (bar)
• N-Butane • Penta-fluoro-propane (R245fa)		CO ₂	N-Butane	R245fa
	10	44.9	1.5	0.8
	20	57.3	2.1	1.2
Using CO_2 allows synergies in the fluid handling	30	72.1	2.8	1.8
or safety infrastructure with the CO_2 capture	40	_ *	3.8	2.5
system, low costs for the organic fluid and a better match with the exhaust gas cooling curve	50	-	4.9	3.4
better maten with the exhaust gas cooning curve	60	-	6.4	4.6
	70	-	8.1	6.0
CO_2 shows some disadvantages (a higher pump	80	-	10.1	7.8
work) which leads to a low plant performance, due to the supercritical conditions and	90	-	12.5	10.0
potentially higher equipment costs due to the	100	-	15.3	12.6
very high operating pressure.	* CO ₂ critical point a	at 73.8 bar and 31 °C		

Effects of N-Butane pressure on ORC performance

20,0

Parameter	Range
Vapor fraction at the turbine	1
entry	
Pressure at the turbine entry	6-12 bar
Temperature at the turbine entry	58-88 °C
Pressure at the condenser	2.5 bar
Temperature at the condenser	25°C
Minimum ΔT at the heat	5°C
exchanger	

0,0 2000,0 4000,0 6000,0 8000,0 10000,0 12000,0 14000,0 16000,0 18000,0

HeatFlow

N-Butane

Pressure (bar)	Temperature (°C)
4	42.2
6	57.6
8	69.6
10	79.4
12	88.0
14	95.5

Waste Heat Recovery (WHR)

An increase of ORC maximum pressure reduces waste heat recovery

WHR from condenser is the highest one and constant up to 10 bar.

High T of saturated water (140 °C) allows to a slightly decrease of WHR from reboiler

WHR from exhaust gas is low and possible only at very low pressure.

ORC net power and efficiency

An increase of ORC maximum pressure increases ORC efficiency

7.1% of ORC efficiency for a ORC maximum pressure equal to 6 bar.

11.9% of ORC efficiency for a ORC maximum pressure equal to 12 bar.

Due to ORC efficiency trend, maximum ORC power is obtained at about 10 bar.

Main plant performance

PC-CCS

Maximum ORC net power (MW)	21.6
Power increase vs reference plant (%)	6.4
Total WHR (MW)	203.1
ORC net efficiency (%)	10.7

NGCC-CCS

Maximum ORC net power (MW)	12.3
Power increase vs reference plant (%)	2.6
Total WHR (MW)	112.0
ORC net efficiency (%)	11.0

		PC	NGCC
Gross power of reference plant	MW	454.6	625.2
Net power of reference plant	MW	420.2	592.0
Net power of plant + CCS	MW	337.8	475.5
Net power of plant + CCS + ORC	MW	359.4	487.8
Net efficiency of reference plant	%	41.5	59.2
Net efficiency of plant + CCS	%	33.3	48.8
Net efficiency of plant + CCS + ORC	%	35.5	50.1

Conclusions

This paper analyses option to recover low-grade heat from CO_2 capture processes for both natural gas combined cycles (NGCC) and Pulverize coal-fired (PC) steam power plants by using Organic Rankine Cycle (ORC) technology.

Three different potential waste-heat sources are identified: exhaust gas cooler, amine rebolier condensate cooling and stripper condenser.

Most appropriate ORC system layouts are discussed: serie, parallel and cascade. Parallel layout has been chosen.

▶ N-Butane has been chosen as an ORC working fluid. Maximum pressure equal to 10 bar leads to best results.

Exhaust gas recirculation (**EGR**) was also considered for enhancing performance of NGCC integrated with CO₂ capture processes.

ORC technology integrated with PC-CCS allow to increase net power output of about 22 MW, whereas the integration with NGCC-CCS limits the increase to about 13 MW.

➢ Globally an overall power plant net efficiency improvement potential of 1.3 percentage point (NGCC) and of 2.2 percentage point (PC) is estimated.

An economic analysis should be performed in order to evaluate costs of integration.

