

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Philipp Petr, Christian Schröder, Prof. Dr.-Ing. Jürgen Köhler, Dr. Manuel Gräber ASME ORC 2015 - 3rd Seminar on ORC Systems, Brussels, October 14th 2015

Waste Heat Recovery System in a Long Distance Bus

Total vehicle model (thermal, longitudinal dynamics)

Boundary Conditions

institut für thermodynamik

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Waste Heat Recovery System in a Long Distance Bus

1. Transient heat source temperature and mass flow rates

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

- 1. Transient heat source temperature and mass flow rates
- 2. Interactions between different subsystems

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

- 1. Transient heat source temperature and mass flow rates
- 2. Interactions between different subsystems
- 3. Predicted states offer futher potential for energy recovery

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

- 1. Transient heat source temperature and mass flow rates
- 2. Interactions between different subsystems
- 3. Predicted states offer futher potential for energy recovery
- 4. ORCs shows a high grade of nonlinear behavior in transient operation
 - ⇒ Linear approaches not feasible in all operating conditions
 - ⇒ Nonlinear approaches are beneficial, but complex
- Nonlinear Model Predictive Control (NMPC) is one method to take this challenge
- NMPC is a repetetive solving of an optimal control problem for finite prediction horizons

Development of a transient mathematical long-distance bus model with a waste heat recovery system

Development of a software tool chain for NMPC

Development of a differentiable High-Speed Model of the ORC for NMPC

Virtual test drive in the European Transient Cycle to test the concept

Block Diagram of the Nonlinear Model Predictive Control

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 10

Block Diagram of the Nonlinear Model Predictive Control

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Block Diagram of the Nonlinear Model Predictive Control

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Software Tool Chain

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Computation Time

Benchmarking NMPC in Partial Load Conditions

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC) ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 15

Expander inlet pressure

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 16

Expander inlet enthalpy

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 17

Expander power

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 18

Pump work

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 19

⇒ Higher net power output due to (optimized) ORC part load operation

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC) ASME ORC 2015 | 14.10.2015 | Philipp Petr | Slide 20

Conclusion and Outlook

- Implementation of advanced control strategies are necessary for small ORC systems operating under transient boundary conditions
- Development of a software tool chain to realize a prototype NMPC
- Development of an ORC High-Speed Model
- Virtual Test Drive of a long distance bus proved the potential of NMPC in the part load section of the European Transient Cycle (ETC)

Outlook

- Improvement of the High-Speed Model regarding computational time and accuracy
- Implementation of physically motivated expander models
- Proof of concept by means of an ORC test rig

Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC)

Philipp Petr, Christian Schröder, Prof. Dr.-Ing. Jürgen Köhler, Dr. Manuel Gräber ASME ORC 2015 - 3rd Seminar on ORC Systems, Brussels, October 14th 2015

Contact Information

Philipp Petr Mail. P.Petr@tu-braunschweig.de Tel. +49 (0) 531 391 - 7895

Technische Universität Braunschweig Institut für Thermodynamik Hans-Sommer-Str. 5 38106 Braunschweig Germany www.ift.tu-bs.de **Dr.-Ing. Wilhelm Tegethoff** Mail. W.Tegethoff@tlk-thermo.com Tel. +49 (0) 531 390 - 7611

TLK-Thermo GmbH Hans-Sommer-Str. 5 38106 Braunschweig Germany www.tlk-thermo.de

