

Experimental testing of a small-scale supercritical ORC

at low-temperature and variable conditions

George Kosmadakis, Dimitris Manolakos, and George Papadakis

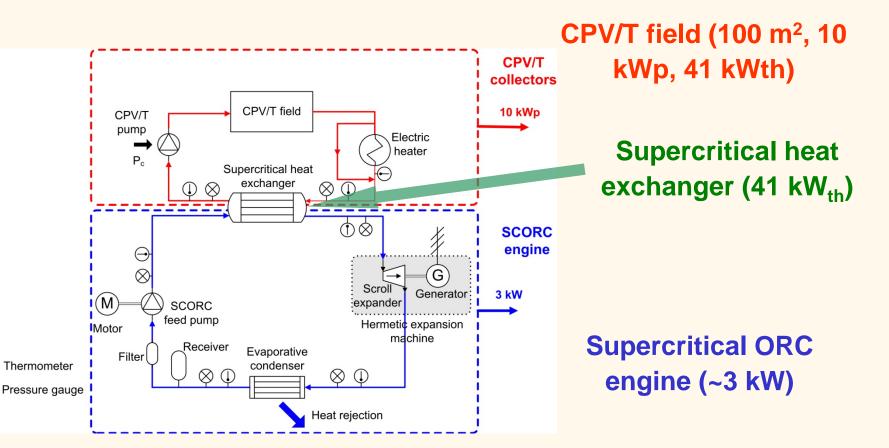
Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens (AUA), Greece

Presentation Outline

- Concept and objectives
- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation
- Conclusions

Concept and objectives

- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation
- Conclusions



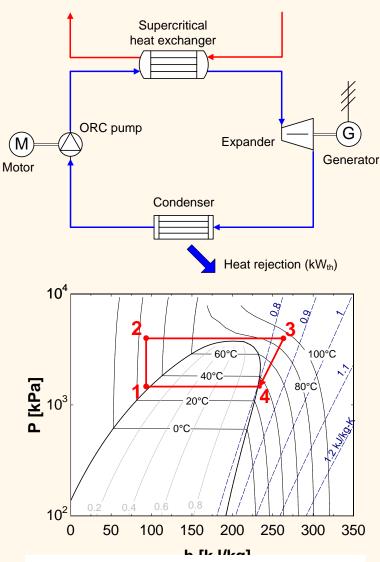
Concept and objectives

Research project FP7-SME: CPV/Rankine (duration: 2013-2014),

www.cpvrankine.aua.gr

Concept and objectives

- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation
- Conclusions



Description of the installed ORC engine

ORC engine – design (single-stage)

- Selection of appropriate organic fluid: R-404a.
- Heat input: <u>41 kW_{th}</u> with max. pressure almost 40 bar [™] (~1.04 P/P_{cr}).
- <u>Thermal efficiency</u> at design conditions: 6.8% with net power production 2.9 kW.
- Condensation temperature ~30 °C and pressure ~15 bar, depending on the condenser operation.
- The pump and expander are equipped with frequency inverters for controlling their rotational speeds.
- <u>Maximum temperature ~85 °C</u> with a 10 K pinch-point temperature difference (at the outlet side).
- Further details about the HEX are provided by UGent.

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12 -14 October 2015, Brussels, Belgium

Description of the installed ORC engine

- The <u>scroll expander</u> is a hermetic scroll compressor in reverse operation, manufactured by Copeland (ZP series: ZP137KCE-TFD with swept volume 127.15 cm³/rev), suitable for high-pressure A/C applications (usually with R-410a).
- Max. isentropic efficiency at compressor mode is 75.2% at pressure ratio ~2.8.
- A new casing was installed and some internal parts have been re-designed for higher performance (e.g. the inlet volume before the fluid enters the steady scroll).

Hermetic scroll

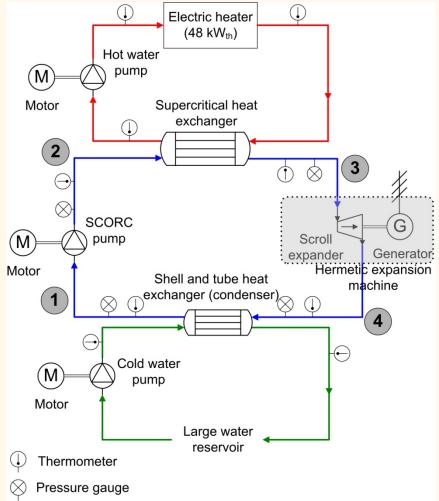
compressor (Copeland: ZP137-

KCE-TFD)

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12 -14 October 2015, Brussels, Belgium

Description of the installed ORC engine

Top: Hermetic scroll expander and side view of ORC


Right: ORC engine

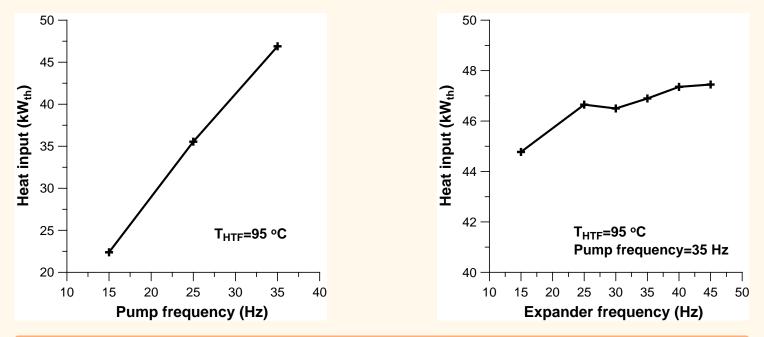
Description of the installed ORC engine

- ORC engine installed in the laboratory.
- Heat input from a controllable electric heater (10-48 kW_{th}).
- HTF temperature adjusted to the desired set point (65-100 °C).
- HTF pump at constant speed (2900 rpm 50 Hz).
 ORC pump and expander speed can be controlled (10-50 Hz).
- Pump: diaphragm pump (20 l/min) by Wanner/Hydra Cell (G-10), with an inlet pressure limit of 17 bar.
- Condenser: shell and tube HEX using cold water (~15 °C) from a 320 m³ reservoir.

Introduction

- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation

Conclusions



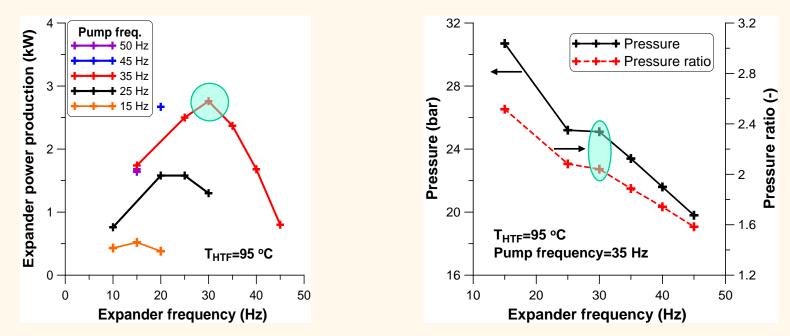
Test results at subcritical operation

All test results presented concern a HTF temperature of 95 °C.

Main parameters varied during operation:

- Pump speed (-> heat input)
- Expander speed (-> max. pressure and pressure ratio)

Effect of pump and expander speeds on heat input

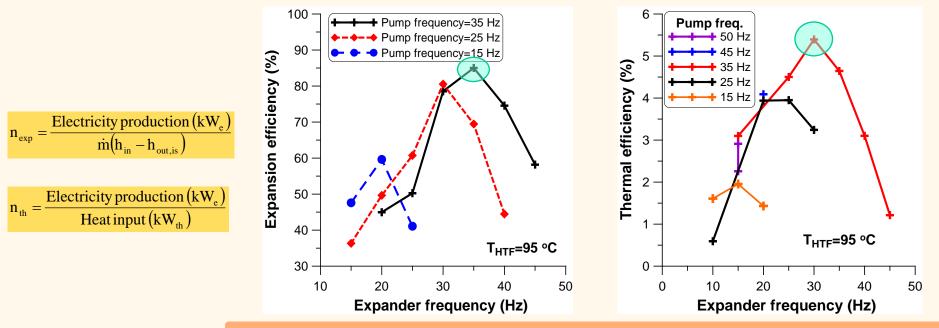


Test results at subcritical operation

Scroll expander operation and performance

- Max. expander power: 3 kW for moderate speeds (pump: 35 Hz, expander: 30 Hz)
- Max. power production is observed for pressure ratio of 2 with max. pressure ~24 bar (almost constant condenser pressure of 12 bar)

Effect of expander speed on power, pressure and pressure ratio



Test results at subcritical operation

ORC engine performance

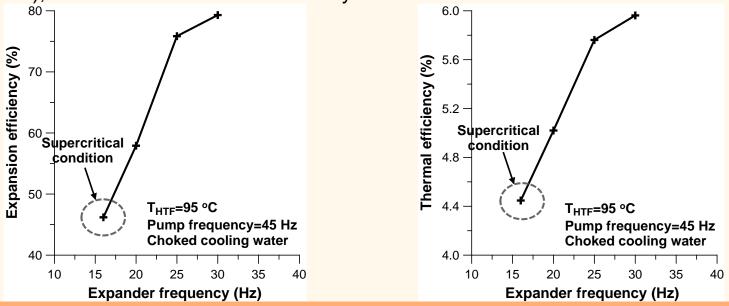
- Max. expansion efficiency: 85% for moderate speeds (pump: 35 Hz, expander: 35 Hz)
- Max. thermal efficiency: 5.5%, observed for the conditions with max. expansion efficiency

Effect of expander speed on efficiency of expander and thermal efficiency

Introduction

- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation

Conclusions



Test results at supercritical operation

For reaching <u>supercritical operation</u>, the flow rate of the cooling water was decreased, increasing the low pressure to around 16-17 bar.

- Pressure ratio: around 2.3 at such conditions
- Expansion efficiency at supercritical conditions: 45% (for expander frequency of 16 Hz), resulting to low thermal efficiency (4.4%)
- For higher expander speeds, the expansion efficiency increases up to ~80% (subcritical operation), as well as the thermal efficiency

Effect of expander speed on expansion efficiency and thermal efficiency (choked cooling water)

Introduction

- Description of the installed ORC engine
- Test results at subcritical operation
- Test results at supercritical operation
- Conclusions

Main conclusions from the laboratory tests

- The small-scale ORC engine operates without any problem and produces power with good performance at subcritical conditions (max. thermal efficiency almost 6%).
- The <u>modified scroll expander</u> shows high performance and much higher than any other expander tests of the AUA research group. Max. expansion efficiency: 85% for a single operating condition, while values around 70% were common for a large range of operation.
- <u>Stable supercritical operation</u> could be reached for choked cooling water only (increase of condenser pressure/temperature).
- At such conditions, operation at low expander speed resulted to high pressure with expansion efficiency ~45% and thermal efficiency of 4.4% (lower than subcritical operation).
- For continuous operation at supercritical conditions, the <u>size of the expander (its swept</u> volume) should be reduced, increasing its speed as well closer to 50 Hz, leading to higher pressure operation at high expansion speeds with increased electric efficiency of the generator.

Main conclusions from the laboratory tests

- By <u>extrapolating the results</u> so far and using a smaller expander, the expansion efficiency could reach values around 70% at supercritical operation, ending up to a <u>thermal efficiency</u> <u>around 7%</u> (higher than subcritical operation).
- Such value is higher than any value recorded at subcritical operation during the tests, which
 is just an <u>indication</u> that supercritical operation can have a good potential at such lowtemperature applications, even at small-scale.

Next steps

- The ORC engine has been installed at the field and connected with the CPV/T collectors.
- First test results have been achieved, showing that such concept is feasible and leads to a total higher production.
- More tests are planned in the future.

ASME ORC 2015 3rd International Seminar on ORC Power Systems 12 -14 October 2015, Brussels, Belgium

Thank you for your attention

Acknowledgements:

- The research leading to these results has received funding from the European Union's Seventh Framework Programme managed by REA-Research Executive Agency, http://ec.europa.eu/research/rea ([FP7/2007-2013] [FP7/2007-2011]) under Grant Agreement n° 315049 [CPV/RANKINE], FP7-SME-2012.
- The AUA research team would also like to thank its project partners for their research work conducted within the **CPV/Rankine** project.

This presentation reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein.