

Automatic Design of ORC Turbine Profiles Using Evolutionary Algorithms

Giacomo Persico, Pablo Rodriguez-Fernandez

Laboratorio di Fluidodinamica delle Macchine

Dipartimento di Energia

Design of ORC turbines

Turbomachinery design demands systematic procedures

ORCs push towards non-conventional turbomachinery (load, efficiency, compactness)

Semi-empirical criteria lack of reliability in non-conventional contexts

High-fidelity CFD crucial in non-conventional turbomachinery R&D

Automatic CFD-based design package required

Evolutionary design strategy coupled with: geometric parametrization methods experimentally validated CFD model surrogate models

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Outline

- Evolutionary Shape Optimization
- Bricks
 - ✓ Parametrization model
 - ✓ CFD model
 - ✓ Surrogate model
- Optimization Strategy Layouts
- Exercise of Design
- Robust Design
- Conclusions

Evolutionary Shape Optimization

- Shape Optimization: to minimize an OF using geometry as design parameters
- Stochastic **Evolutionary** Optimization (inspired by Evolution Theory):
 - ✓ Direct: no need of problem inversion, only need direct CFD tools
 - ✓ Heuristic: requires statistical relevance (→ high cost)
- Combined with **surrogate models** to tackle computational cost
- Non-dominated Sorting Genetic Algorithm:
 - ✓ 200 generation
 - ✓ 70% of crossover
 - ✓ 2% of mutation
 - ✓ elitism

POLITECNICO DI MILANO

GA SCHEMATIC

Briks Blade geometry parametrization

- Concept: blade geometry as succession of regular lines identified by **Control Points**
- **B-Spline** cubic lines: C² smoothness, identified by 4 CPs, computed recursively
- Degrees of **freedom**: impose passing by CPs, circular TE

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Briks CFD model

- High-fidelity blade-to-blade flow model
- Quasi-3D steady flow model
- Hexahedral grids with $50 \div 400$ kcells
- Solver: Finite Volume ANSYS-CFX, with:
 . HR methods for inviscid fluxes
 - . centred scheme for diffusive terms

- Turbulence model: **k**- ω **SST** with near-wall boundary layer solution (wall y⁺ ~ 0.1)
- **Real gas model** implemented via **Look-Up-Table** approach; LuT constructed using a generalized thermodynamic library
- Flow model validated against experiments (Persico et al., 2012, ASME J. Turbomach.)

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Briks Surrogate model

- 10⁴ OF evaluations required by GA, CFD runs are expensive
 → surrogate models to speed-up convergence
- Surrogate: analytical function that mimics the 'response surface', being:

✓ highly flexible

✓ initially tunable

✓ **adjustable** via a learning process

• **Re-tuning** of the surrogate model

✓ Initial interpolation on a data-base (DOE)

 \checkmark GA <u>only</u> applied to the interpolated surrogate model

✓ Improvement of data-base and re-interpolation close to the optimum

• **Kriging** surrogate model used (suitable for highly irregular data distributions):

Optimization Strategy: Local vs Global

- ✓ Initial CFD-based DOE for response sampling
- \checkmark Surrogate function interpolated and minimized

Local 'trust region' method

Trust region reliability checked by trust ratio

$$\rho^k = \frac{f(x_c^k) - f(x_{opt}^k)}{\tilde{f}(x_c^k) - \tilde{f}(x_{opt}^k)}$$

- ✓ If reliable ($\rho^k > 0.5$), trust region shink
- ✓ CFD-based DOE in new trust region
 - \rightarrow Trust region collapses on optimum

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Global 'training' method

- ✓ Optimum checked by CFD
- ✓ New CFD value added to data-base
 - ✓ Surrogate re-interpolated
- \rightarrow Surrogate minimum approaches optimum

Exercise of Design Test case

Supersonic converging-diverging cascade (M = 2.1) for axial ORC turbine (MDM)

Baseline configuration:

Strong shocks generated on Suction Side and on TE (fishtail)

Weaving wake trace due to huge circumferential pressure gradients

 \rightarrow dramatic raise of loss due to shock mixing downstream (and impact on rotor?)

Exercise of Design Procedure

Objective Function

Standard deviation of static pressure half a chord downstream of the TE

 \rightarrow Minimize shock, shock mixing loss, flow disuniformity in stator-rotor gap

Design Space

Parametric study on CP number and design space initially performed <u>15 movable CPs</u> in the rear blade section both on PS and SS

Computational Cost

grid dependence analysis to reduce the cost of CFD run \rightarrow low fidelity (100 kc) optimization, high fidelity (400 kc) validation

Exercise of Design Convergence history

Convergence attained by both methods \rightarrow nearly identical min OF (and blade!) Global-<u>Cost</u> \approx 20 h (16 proc. Cluster); Local-Cost \approx 3 × Global-Cost

LF optimization proved to be reliable when verified in HF (very well matched trend)

Optimization Results Outcome

Optimized configuration Enhanced divergence → Nearly uniform Pressure downstream
 → Dramatic shock reduction

Optimization Results Flow field and performance

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Constrained Optimization 1% of flow rate

Convergence history

Surrogate model constructed also for the contrained quantity Convergence attained but outcome slightly worst than non-constrained optimization Non-constrained optimal blade satisfies flow rate contraint by fixed CPs up to throat → Geometrical contraint more effective than process contraint (chocked flow) Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles POLITECNICO DI MILANO

Robust Design

Multi-point Objective Function:

Standard deviation of P combining 2 or 3 operating conditions (possibly weighted)BaselineOptimized

worst scenario ($\beta = 0.5 \beta_{DES}$)

Outcome of Evolutionary Optimization similar to Outcome of Adjoint-based Gradient Optimization

Pini, Persico et al., Adjoint Method for Shape Optimization in Real-Gas Flow Applications, J. Eng. Gas Turbines Power, 2015, Vol 137

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles

Conclusions

- High-fidelity methodology for ORC turbine design developed and applied
- Package: genetic algorithm, surrogate model, CFD, geometry parametrization
- Two surrogate-based strategies tested and proved to provide similar outcome
- Successful optimization (40% loss reduction), with 20 h of computational cost
- Constrained optimization developed, even though preventing full minimization
- Successful implementation for robust (i.e., multi-point) design

Thank you! Any questions?

giacomo.persico@polimi.it www.lfm.polimi.it

Laboratorio di Fluidodinamica delle Macchine

Dipartimento di Energia

POLITECNICO DI MILANO

POLITECNICO DI MILANO

MILANO

Persico, Rodriguez-Fernandez Automatic Design of ORC Turbine Profiles