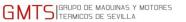
### ANALYSIS OF THERMAL ENERGY STORAGE SOLUTIONS FOR A 1 MW CSP-ORC POWER PLANT

David Sánchez, Hicham Frej, Gonzalo S. Martínez, José María Rodríguez, **El Ghali Bennouna** 


3rd International Seminar on ORC Power Systems, October 12-14, 2015, Brussels, Belgium



GMTS GRUPO DE MAQUINAS Y MOTORES

**C**aicia









### Content

Introduction

Methodology

CSP-ORC plant description

Thermodynamics of heat storage

Potential storage configurations for CSP

Thermal storage technologies



Daily simulation results

Overall technologies comparison

Conclusions

www.iresen.org









### Introduction

#### Why a Solar-ORC System?

- Applicable to medium size power plants (<5MW);
- Not much capital intensive, faster to deploy;
- Simpler than conventional steam cycle;
- Low pressure/ low cost piping;
- Firmer dispachability than PV;
- Good part-load generation application...

### Why a Thermal Storage System?

- Increased power production;
- Lower LCOE (electricity generation cost);
- Possible production extension to night time;
- more stable heat supply...



**SOLTIGUA Linear Fresnel Collector** 

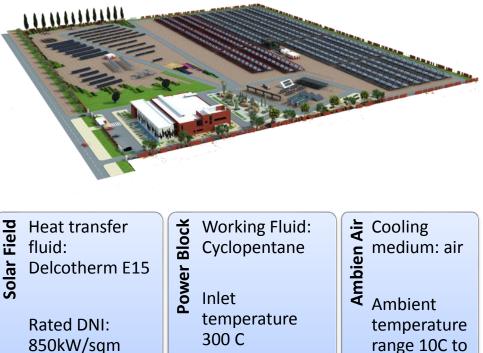


**EXERGY radial outflow turbine** 








## Methodology: CSP-ORC plant description

#### Gross Power Output: 1 MWe

Estimated Production: 1,5 GWh/yr (DNI Benguerir: 2100 kWh/m<sup>2</sup>/y)

Land usage: ~2.5 Hectares without storage, ~3.5 Hectares for with storage.

|                            | Classical steam-<br>CSP            | CSP-ORC                   |  |
|----------------------------|------------------------------------|---------------------------|--|
| Solar technology           | PTC collectors                     | collectors Linear Fresnel |  |
| Cooling medium             | Water                              | Air                       |  |
| Foot print                 | 2,5ha for 1MWe                     | 2,2ha for 1MWe            |  |
| CO <sub>2</sub> equivalent | 1000t/ year                        | 1000t/ year               |  |
| Water<br>Consumption       | Over 10000m <sup>3</sup> /<br>year | 0m <sup>3</sup> / year    |  |
| operation                  | manned                             | unmanned                  |  |
| Type of HTF fluid          | Synthetic oil                      | Mineral oil               |  |



Outlet

180 C

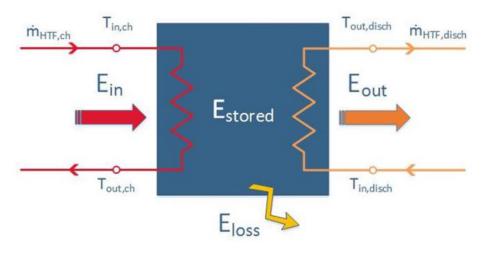
temperature

Heat output: 5000kW<sub>th</sub>

range 10C to 45C










# Methodology: Thermodynamics of heat storage

 $\eta_{TES,charging} = E_{stored}/E_{in}$   $\eta_{TES,discharging} = E_{out}/E_{stored}$ 

 $\eta_{TES,overall} = \eta_{TES,charge} \times \eta_{TES,discharge} = E_{out}/E_{in} = 1 - E_{loss}/E_{in}$ 



Scheme of an elementary TES system

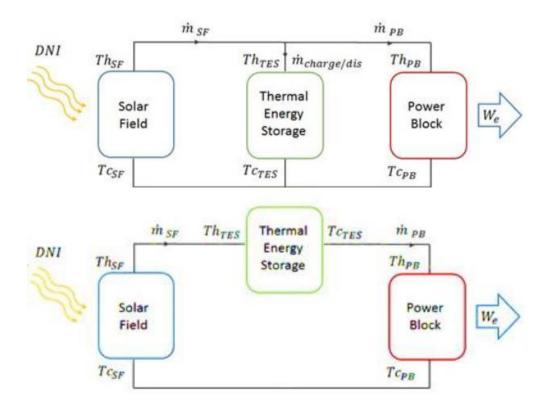
- Energy being supplied to the system;
- Energy that can be delivered back by the system;
- Energy that was initially in the system;
- **Energy that is lost the surroundings;**
- **Residual energy not being delivered by** the storage system.



GMTS GRUPO DE MAQUINAS Y MOTORES






# Methodology: *Possible storage configurations for CSP*

#### Parallel configuration

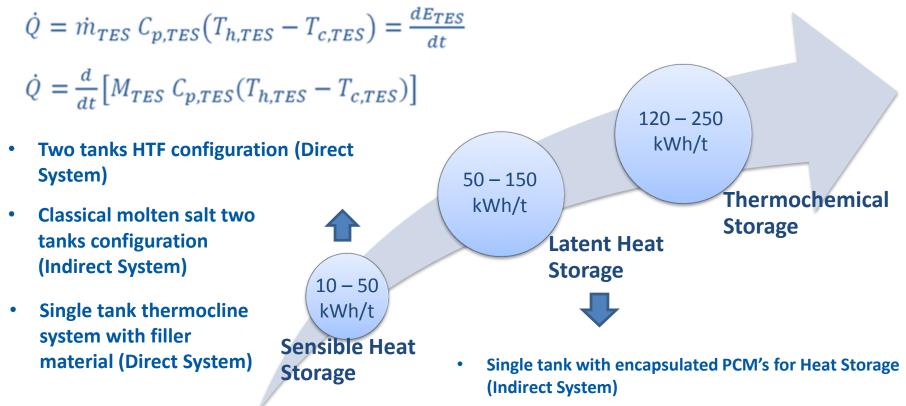
- Allows a separation between the storage and the rest of the plant.
- Allows for higher temperatures within the storage.
- More operation flexibility.

#### **Series configuration**

• Preferred for latent heat storage systems.



#### TES system integration layouts: parallel (top) and series (bottom).









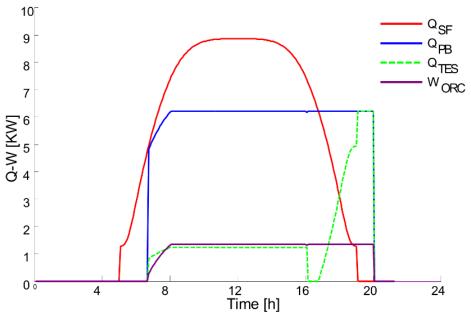

# Methodology: Thermal storage technologies

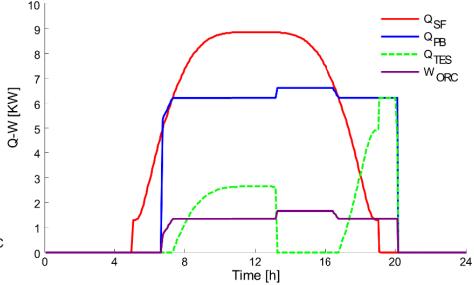


$$\dot{Q} = \dot{m}_{TES} \ \lambda_{PCM} = \frac{dE_{TES}}{dt} = \frac{d}{dt} [M_{TES} \ \lambda_{PCM}]$$

IRESEN Institut de Recharche en Energie Solaire et en Energies

GMTS IGRUPO DE MAQUINAS Y MOTORES




## Results:

### Daily simulation results

Daily performance of the direct sensible heat TES system (right) and indirect latent heat TES system (bottom).





#### **Main parameters**

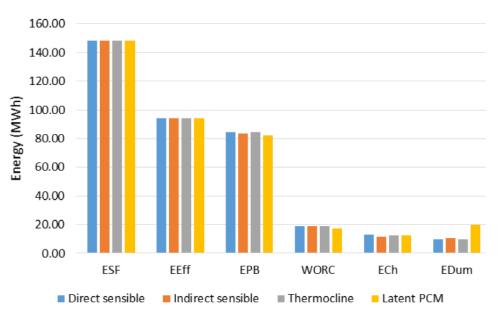
- Heat from the solar field,
- Heat from/to the storage system;
- Heat to the power block;
- Electric yield.



GMTS GRUPO DE MAQUINAS Y MOTORES






# Results:

## Overall technologies comparison

#### Main remarks

- Larger amount of energy is dumped with indirect and latent systems;
- Higher system density for indirect and thermocline systems;
- Lower average Power Block efficiency for the latent heat system;
- Electric yield.

|                                               | Direct<br>sensible | Indirect<br>sensible |       | Indirect<br>latent |
|-----------------------------------------------|--------------------|----------------------|-------|--------------------|
| Average PB<br>efficiency (%)                  | 22,25              | 22,29                | 22,13 | 21,23              |
| Storage<br>medium<br>volume (m <sup>3</sup> ) | 420                | 315                  | 200   | 125                |



#### **Comparison of daily TES operation parameters:**

- Energy collected by SF "ESF";
- Energy on the HTF "EEff";
- Energy to the ORC "EPB";
- Electric production "WORC";
- Energy to the TES "Ech";
- dumped energy "EDum".



MTS GRUPO DE MAQUINAS Y MOTORES





### Conclusions

#### The main conclusions drawn from the work presented here are:

- Sensible heat storage systems enable faster charging processes and more agile operation;
- Latent heat systems exhibit poorer thermodynamic performance in comparison with sensible heat storage;
- Direct sensible heat storage systems request a prohibitive amount of storage medium;
- Latent heat systems require the lowest amount of storage medium;
- Thermocline storage steps forward as the most leveraged solution.

### Thanks for your attention

#### El Ghali Bennouna

#### Thermal storage systems

| : + 212 (0) 620 30 75 10 |
|--------------------------|
| : + 212 (0) 537 68 88 52 |
| : bennouna@iresen.org    |
| : ben.elg                |
|                          |

**Research Institute on Solar Energy and New Energies (IRESEN)** *Quartier Administratif BP 6208 Rabat-Instituts Agdal – Rabat, Morocco* 

www.iresen.org



GMTS IGRUPO DE MAQUINAS Y MOTORES

