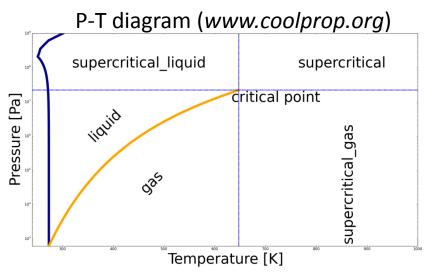
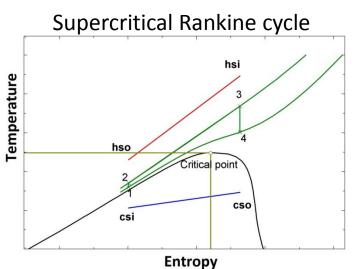


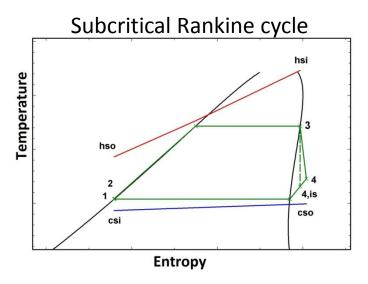
Sizing and parametric optimization of a waste heat to power plant based on Trans-ORC

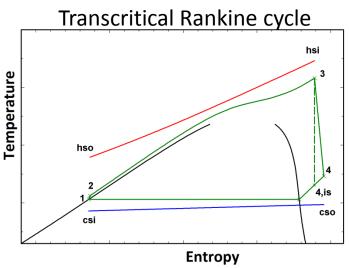
<u>Van Long Le¹</u>, Michel Feidt², Abdelhamid Kheiri², Vincent Lemort¹

¹ Thermodynamic Laboratory, University of Liège ² LEMTA, University of Lorraine




Outline


- What is a Trans-ORC?
- Why Trans-ORC?
- Equipment sizing and capital cost estimation
- Parametric optimization
- Conclusions



Trans-ORC: Transcritical Organic Rankine Cycle

Trans-ORC benefits and challenges

Benefits:

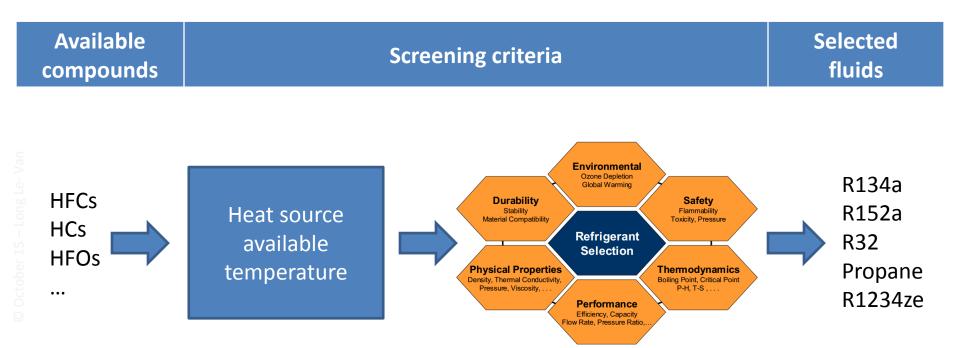
- Better match between resource cooling curve & working fluid heating curve → greater utilization of the heat source → More power with higher efficiency
- Single primary heat exchanger
- Components are compact and the cost of both components and connecting piping can possibly be lower

Challenges:

- Higher cost and more pump power required
- Additional engineering on supercritical heat exchangers and special attention paid to the pressure ratio limits on the expander

Trans-ORC References

- Geothermal Kirchweidach (Germany)
 - Cryostar Trans-ORC (T_{source}: 130°C, working fluid: refrigerant, Cryostar TG-700: 8.1 MW)
- Geothermal Livorno (Italia)
 - Turboden Trans-ORC (T_{source}: 150°C, working fluid: refrigerant, net power: 500 kWel)
- Geothermal TAS Trans-ORCs (working fluid: R134a)
 - 13.2 MW Gumuskoy power plant
 - ~3 MW TAS Trans-ORC (Net San Emidio power plant)
 - 22 MW Neal Hot Springs Power Plant



Objective

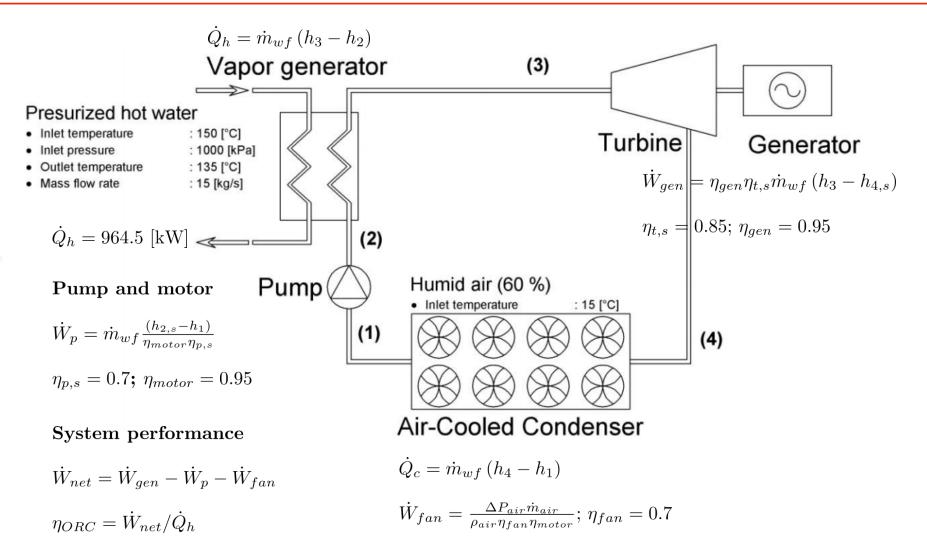
 Sizing and parametrically optimizing a small scale Trans-ORC to recover energy from a cooling circuit of turbine exhaust gas

Working fluid properties

Factors influencing working fluid selection (Horn, 2011)

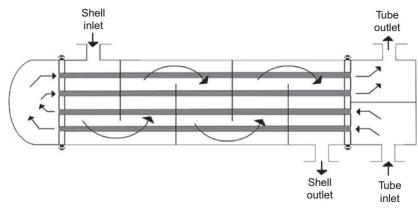
Working fluid properties

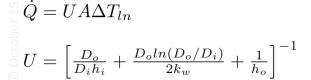
	R134a	R152a	R32	Propane	R1234ze (E)
GWP	88	©	8	00	00
Toxicity	© ©	© ©	00	00	00
Flammability	© ©	8	©	88	©
Materials	©	©	©	©	©
Pressure	©	©	8	©	©
Cost	©	©	©	00	8
Availability	00	© ©	© ©	00	8
Familiarity	©	©	©	©	8



Equipment sizing and cycle performance

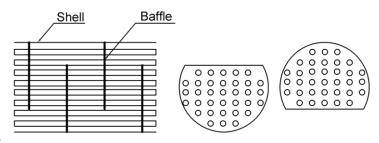
- Power consumed by ORC feed pump
- Heat transfer surface area of heat exchangers
- Power consumed by fan
- Power produced by turbine/generator
- Working fluid quantity
- Net cycle power and thermal efficiency


Equipment sizing and cycle performance



Vapor generator

Shell and tube heat exchanger



Heat transfer and pressure drop in shell side: Kern method

Heat transfer inside tube: Jackson correlation (2002)

Optimized variables: baffle spacing, number of tube

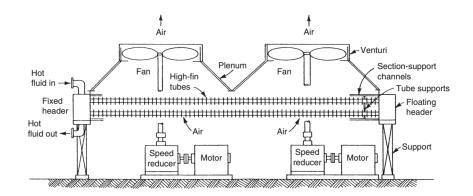
Contrainst for the optimization: pressure drops, tube length

Flow

Baffle

Shell

Single-segmental cut baffle



Air-cooled condenser

$$\dot{Q} = UA\Delta T_{ln}$$

$$U = \frac{A_{tot}}{A_i h_i} + \frac{A_{tot} ln(D_o/D_i)}{2L\pi k_w} + \frac{1}{\eta_w h_o}$$

 A_{tot} : Total external surface of finned tube

Air-cooled heat exchanger (Kraus et al., 2001)

Horizontal finned tube bundle

Air side heat transfer & pressure drop: Ganguli correlations (Ganguli et al., 1985)

Single phase heat transfer inside tube: Gnielinski correlation (Gnielinski, 1976)

Two phase heat transfer inside tube: Shah correlation (Shah, 2009)

Optimized variables: tube pass number, tube number

Optimization constraints: pressure drop, tube length

Equipment costing

Free-on-board (f.o.b) purchase cost of equipment, C_P

$$C_B = e^{\{A_0 + A_1 \ln(S) + A_2[\ln(S)]^2 + \dots\}}$$

$$C_P = C_B F_P F_M$$

$$C_P^{2013} = C_P \frac{\text{CEPCI}_{2013}}{500}$$

 C_B : Equipment base cost

S: Equipment size or capacity

 F_P : Pressure factor

 F_M : Material factor

CEPCI: Chemical Engineering Plant Cost Index

Capital investment

$$C_{TCI} = \sum C_P + C_{wf} + C_{sp} + C_{sf} + C_{CCF}$$

 C_{TCI} : Capital investment

 C_{wf} : Cost for working fluid

 C_{sp} : Cost for site preparation

 C_{sf} : Cost for service facility

 C_{CCF} : Cost for contigencies and contractor's fee

Values of constant A_0 , A_1 and A_2 can be found in (Seider et al., 2010)

Parametric optimization

Goal function: SIC (Specific Investment Capital)

$$SIC = \frac{C_{TCI}}{\dot{W}_{net}}$$

Opimization variables:

- Inlet turbine temperature, pressure
- Condensation temperature (or pressure)
- Fluid velocity inside tube of vapor generator and condenser
- Baffle spacing of shell-and-tube heat exchanger
- Tube pass number of air-cooled condenser

Optimization constraints:

- Pressure drops of fluids throug heat exchangers
- Heat exchanger tube lengths
- Minimum temperature diferences between hot and cold fluid

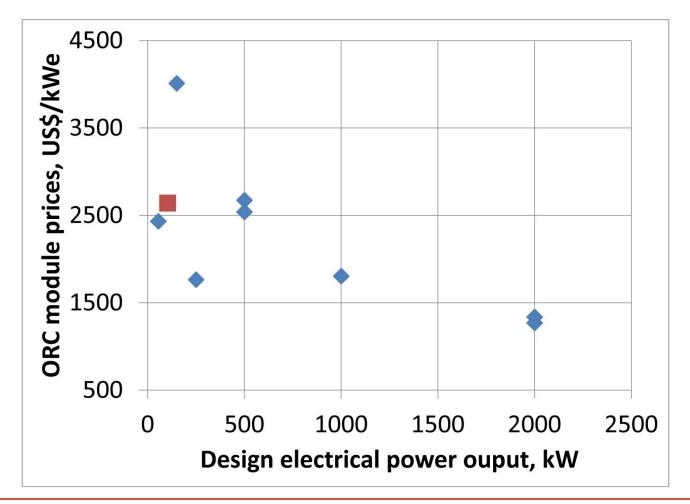
Genetic algorithm optimization(EES)

Number of individual: 16

Number of generation: 64

Results

Parameters	R134a	R152a	R32	Propane	R1234ze (E)
Electrical power output, kWe	88.7	102.9	93.1	89.3	95.6
Thermal Efficiency, %	9.2	10.7	9.7	9.3	9.9
TIT, °C	140	139.6	140	140	140
TIP, kPa	5420	5014	9253	6087	4206
T _{cond} , °C	48.1	44.4	40.5	43.8	43.5
P _{cond} , kPa	1257	1022	2509	1494	842.7
T _{cso} , °C	29.8	29.9	28.9	29.5	29.9
SIC, US\$/kWe	2937	2641	3155	3075	3059
Avoided CO ₂ emission*, t/year	131.5	268.5	243	258.9	249.5


Lowest SIC

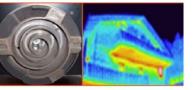
^{*} Annual operating hours is assumed to be 7884 h/year at full load with specific CO₂ emissions for electricity generation of 331g/kWh (Clément, 2014)

Results

- Sub-ORC module (data adapted from Vanslambrouck et al., 2011)
- SIC of R152a-based Trans-ORC

Conclusions – Perspectives

- Sizing and minimizing Specific Investment Capital of a Trans-ORC for WHR
- Trans-ORC presents a real potential to improve performance and reduce investment of smallscale waste heat to power plant
- Thermo-hydraulic and economic models should be considered in more detail
- Other improvements should be considered for Trans-ORC power plant


References

- Kim YM, Kim CG, Favrat D. *Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources*. Energy. 2012;43(1):402-15.
- Horn BV. A primer on HFOs Hydrofluoro-olefins Low-GWP refrigerants. Las Vegas, NV2011.
- Kern DQ. Process Heat Transfer: McGraw-Hill, 1950.
- Jackson JD. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors. Shenzhen City, China2002.
- Ganguli A, Tung SS, Taborek J. Parametric study of air-cooled heat exchanger finned tube geometry. Conference Parametric study of air-cooled heat exchanger finned tube geometry. p. 122-8.
- Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering. 1976;16:359-68.
- Shah MM. An Improved and Extended General Correlation for Heat Transfer During Condensation in Plain Tubes. HVAC&R Research. 2009;15(5):889-913.
- Seider WD, Seader JD, Lewin DR, Widagdo S. *Product and process design principles: synthesis, analysis, and evaluation*: John Wiley, 2010.
- Clément L. Final report LIFE08 ENV/B/000040 CLIM-WASTENER. Bierges, Belgium: VERDESIS SA; 2014.
- Vanslambrouck B, Vankeirsbilck I, Gusev S, De Paepe M. *Turn waste heat into electricity by using an Organic Rankine Cycle*. 2nd European Conference on Polygeneration. Tarragona, Spain2011. p. nn-mm.
- Kraus A, Aziz A, Welty J, Sekulic D. *Extended Surface Heat Transfer*. Applied Mechanics Reviews. 2001;54(5).

Thank you for your attention!